Senior Design Final
Report

Danfoss Forklift Request Application
May14-34

Date: April 27®, 2014

Customer: Danfoss Power Solutions - Manufacturing IT
Brad Rosenhamer - Manufacturing IT

brosenhamer@danfoss.com

Advisor: Samik Basu

shasu@iastate.edu

Project Team: Jonathan Carlz
Ryan Sanders
Tyler Jensen
Sean McCullough



Table of Contents

Project ADSIFACT. ...ttt e e e e e e e s 3
KEY DfINItIONS. ..ttt e e e e e e et e e e e e e e e e e bbb et e e e e e e e e e e e nnnnanneeeeeaeeeas 4
YA (=T I R C=T0 TUT =T 0 0 T=T o 5
PrOJECE DESIGN.. .o 6
REQUESES. ..ottt e e e e e e e et e e e e e e e e e e et e e e e e e e e et aaaas 6
REQUEST States. ... e e 6
ReqUEST STate FIOW. ... e e e e e e 7
Enterprise Architecture Component Diagram...........coocuiiiiiiiiiiee e 8
D=1 e= Lo F= LTS Tod 1T o o - T 9
SCrEEN SKEICNES. ... . e e e e e e e e s e e e e e e e e e annes 10
0 €= 10 F= (0 - 15
Implementation Details.......... ... 16
VIBW(S). et eetteeeeteeeaeteeeteeeteeaeseaae e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eeaaeaaaaaaaaaaaaas 16
(O70] 01 10] |11 (5 TR 17
17/ Yo 1 18
1= T PP PPPPRPRRRRRRRP 19
FroNteNnd. .. ... ———————————— 19
BaCKENA. ... 19
S Ter= 1 1= | o] 1 4 2O PPPPTPPPP 20
(O] a1 0 1= Tox 11771 SO PPPRRPR 20
Beta. o 20
Appendix I: Operation ManUAL..............oooiiiiiiiiee e e e e e e e e e s e e e e e e e e e aannnes 21
1 1S3 =1 1 = £ ) o 21
ReEQUESTE States. ... e e e e e e e enees 22
ASSEMDIY LINE USEI ...t e e e e e e e 23
FOrKIift OPerator USET......cooi ittt e e e e e e e e e e nneeeees 29
AdMINISTrAtIVE USEI ..o e e e e e e e e e e e e e as 34
APPENIX I1: Other DESIGNS. .. .ottt e e e e e e e et e e e e e e e e e e e nneeeeeaaeeees 36
Appendix Ill: Other Considerations.............ooi it aeeeennees 39



Project Abstract

Danfoss Power Solutions is an engineering and manufacturing firm that provides OEMs
(original equipment manufacturers), such as John Deere and Caterpillar, with hydraulic
components for their final products. Danfoss requires a method to facilitate forklift dispatch
at their Ames facility.

Previously attempted solutions included two-way radios and cell phones, however, both
were ineffective. The radios and phones were difficult to hear in the factory and presented
safety concerns.

The project described in this document involved developing a web-based request and
dispatch solution, deployable over a local network. Assembly line employees enter
requests at PCs near their workstation, which forklift operators can respond to on tablets
mounted to the forklifts.



Key Definitions

Administrator
A Danfoss employee who has supervising authority over the application. He has access to the
application through a browser on a PC.

Application
The software solution designed and created by the May14-34 group to solve Danfoss’ forklift
dispatch problem.

Assembly line employee
A Danfoss employee who works on an assembly line. These employees access the application
through a browser on a PC.

Backend
A portion of the application that interacts with requests and request states directly.

Client
A web browser used to access the application. Examples include Microsoft’s Internet Explorer
and Apple’s Safari.

Deployment
An instance of the application running in a production environment.

Forklift operator
A Danfoss employee who operates a forklift, and accesses the application via a tablet mounted
on the forklift.

Frontend
A portion of the application that controls client access to the Backend portion of the server

Request
Also referred to as a forklift request. A request is what an assembly line employee creates and a
forklift operator processes.

Request state
A request can be in one of seven request states: opened, assigned, in-progress, completed,
canceled, abandoned, and rejected. These states describe where a request is in its lifecycle.

Server
The server is the computer that accepts and responds to client calls.



System Requirements

The FRA has a variety of functional requirements. These requirements come from
three stakeholders: Danfoss and the Senior Design Syllabus. The group has two subsets
of their requirements: functional and nonfunctional. Functional requirements include
“physical” (with respect to software) abilities the application must provide.
Non-functional requirements include attributes such as reliability, responsiveness, and
accessibility.

Functional

Functionally, the FRA must allow assembly line employees to create Forklift Requests
and forklift operators to respond to those requests. Additionally, administrators must
be able to perform operations such as viewing forklift request log data in both tabular
and graphical form.

Finally, the application must be fully compatible with Internet Explorer 8 and Safari
Mobile web browsers. These browser requirements greatly impacted design decisions
and chosen technologies.

Non-Functional

Non-functionally, the Forklift Request Application must be reliable, responsive, and
accessible. To ensure reliability, the team created coherent unit tests covering the
code base. These unit tests verified both normal and illegal input to ensure end users
receive the best experience possible. To ensure responsiveness and accessibility,
data is stored efficiently in an indexed form, and populates the user interface in an
asynchronous way, to ensure only non-redundant data transfer and processing. Finally
to ensure accessibility, icons were created to help color blind users of the application.



Project Design

Requests

When an assembly line employee needs assistance from a forklift, a request is created using
the Forklift Request Application (FRA). Requests states are used to track the lifecycle of a
request. A request can make legal transition from one state to another at any time; however a
request only exist in one state at a time. The requests states are described in detail below.

Request States:
Each state has an associated color. Symbol are also provided to aid color-blind users.

Name Color | Symbol Note

OPENED Request has been created, but not yet accepted by a
forklift operator

ASSIGNED - A forklift operator has accepted the request

ABANDONED q Request has been in forklift operator's queue for
more than 10 minutes. It is marked as abandoned
and placed back in the main queue

IN_PROGRESS # Forklift operator has begun working on a request

COMPLETED V The task has been completed

REJECTED The request information was incomplete and the
request could not be completed

CANCELED X The request is no longer needed




Request State Flow

The State Flow Diagram, shown in figure 1, shows the request states, valid transitions, and
actions initiating these transitions. When an assembly line user creates a request, it begins in
the opened state. Then, a forklift operator may select the open request and assign it to his/her
work queue. The forklift operator can pick a request from his/her queue to complete, causing the
request to enter the in progress state. If the forklift operator fails to complete the request in 10
minutes, the request is abandoned, and returned to the main queue. Forklift operator may also
reject a request if it contains incomplete or incorrect information. Likewise, assembly line users
may cancel a request that is no longer needed. When a request is completed by a forklift

operator, it is marked as complete.
( START )

Request created by|Cell/Area User

v

Requ est State: Cell user needs to cancel request
OPEN <

Request gets re-selected and added to Forklift driver|sees request and adds to

work list

driver’s work list

Request State: Request Is in forklif Request State:
ABANDONED < queue for 10 minutes ASSIGNED

Forklift driver begins working on request

Y

Request State:
IN PROGRESS

Forklift|driver rejects request

A4

Forklift work is complete. User or opera- Request State:

tor marks asjcomplete »
CANCELED
v

Request State:
COMPLETE

>< END )

Figure 1 - Request State Flow Diagram



Enterprise Architecture Component Diagram

Forklift Request System

Back End Web Service Front End Web Service

|—> \
« Database access (Create, read, « Userinterface %

update, delete) Workstation

« Client logic
- Entity + Business logic « Web sessions
. . —
4———>|  Framework « Validation i
e
(ORM)

Figure 2 - Enterprise Architecture Component Diagram

Beginning on the left side of the diagram, the first component of the system is a Microsoft SQL
database. The database was created in Microsoft SQL Server 2012, which conforms to
Danfoss’ requirements and current standards. The schema for the database is shown in figure
2 and further explanation can be found in the Database Schema section.

Entity Framework is a component of the Backend Web Service, which performs several major
functions. This component provides the Frontend Web Service an interface to the database.
This database interface is a security feature, as it prevents direct access to application data
from the user facing side of the application. It also allows for validation of data, and the logic
facilitating the flow of requests in the application.

The Frontend Web Service is the component that handles web sessions, which are used for
user authentication. The front end provides the user interface, including how the information is
prepared and presented.

The communication between the Backend Web Service and the Frontend Web Service is done
through Windows Communication Foundation. WCF is a Microsoft tool that facilitates API calls
between services running in a distributed system. In the case of the FRA, WCF allows the Front
End Web Service to invoke methods of the Back End Web Service, even if they are running on
separate servers.

The final component of the system is the client, which runs in the web browser on PCs or
tablets. The PCs are located near each assembly line, and allow access to the assembly line
view. The tablets are mounted on the forklifts, and allow operators to access the forklift view of
the application. The tablets selected for the project were iPads, as they are the standard tablet
device for Danfoss. However, an iPad is not strictly necessary, because the system is a web
application, and can be accessed from any modern browser.



Database Schema

There are two main sections of the database schema: one for requests, and the other for users.
Starting in the lower left of figure 3, the Role table contains roles a user can have - either as a
forklift operator or assembly line employee. The user table contains the ID number and
username for all users in the system. The Role and User tables are linked by the UserRole
table, which associates UserID and RolelD for each user.

There are five tables in the Request section. Beginning in the upper left, the RequestStates table
consists of the valid states a request can have. Although this information is not strictly
necessary to exist in the database, it allows for data validation through table relationships. Next,
the different assembly lines are stored in the Area table, and individual PCs are associated with
assembly lines in the AreaDeviceMapping table. Actual request objects are stored in the
Request table, and each request state change is recorded in the RequestStatus table. This
means that a request can have multiple entries in the RequestStatus table, one for each state
change.

CB RequestStatus @

C@ RequestStates @

= Properties = Properties
= properties &£ 1D & D 5 -
& D K < & RequestlD & ArealD = Properties
1 . o 9
¥ Description & StatusID . L » PartNumt?erv - N & I
fre . . K Timestamp K PartDescription . & DepartmentDes...
* Navigation Properties 1
& CompletedBy & ContactUserID & PlantNumber
# DeviceName & Comment & DepartmentNu...
* Navigation Properties & Priority * Navigation Properties
K CreatedDTS
* Navigation Properties 1

G}g AreaDeviceMapping @

= Properties
? = Properties = Properties
¢k ID > 3 2 D = Properties 2 D
# Description 1 ) x % < ¢
& Naviaation P ; F UserlD * 1 r: D % DeviceName
avigation Properties ¥ RolelD Username F ArealD

+ : : .
* Navigation Propertl’es| WergEiEtem Propertles| | * Navigation Properties |

Figure 3 - Database Schema for the Forklift Request Application



Screen Sketches

Forklift Operator View

sales
rescpLesL will
turn bile

Scroll down to see more reguasis

/ =7 &3
Forklift Dispatch Forklift
TN quess assign fo me—e Ty L
coell g —
-4— put back | DCII'I'IFII'E:B{L
’ resquiest, abioud o
el narme lirmastamp el narme - o ar
cell name timestamp call name imestame |
In-procass
cell name tirmastamp cell nams timestamg reue s
b
oomplate
cell nama timestamp R“‘*-.
Time einca
cell nama imastamp viaw inéo raLaEst was
accepied
o N\
call nama . limastamp

Noba: requests will be place back
i e Frain quiedss i ey haven
be sarvicad within 10 minutes.

recpuests change
color and flash

wihien their stade

\

Requesls ane dsplayed in fhe main
queus with the cell name and time the
reuast was created

changas

10



Assembly Line Employee View

Scroll down to see more requests

/

Miote: requesis will be place back
im the main quews if they haven't
be serviced within 10 minutes

A cell operator can only mark reguests in
thelr guele 3% IN-process oF complete

/ = &3
Forklift Dispatch Cell Name
main gueLe create Y GUeLE
call name timestamp .
wviaw infa in-process request
call name timestamp id timestamp
-
cell name timestamp in-procass id fimestamp h\'"'-
Time since
call name tirmestamp frga“fﬂ Wk
complete
call name timestamp |
A\
cell name timesiamp help \ \
cell name timesiamp \\When a requast’s
cancel status changes, its
cell name timestamp cobor will change, it

will flash

\

\

Reguests are displayved in the main
gueus with the cell name and time the

reguest was created

11



Request Detailed Info Screen

Forklift Dispatch

maln gueus

Request info

cell name

cell name

call name

cell name

cell name

call name

cell nanme

cell name

Cell: sample cell

Crealed: 9:4%9am

User: nfa

Material;

Comment:

Status

Ok

timestamp
lirestamp

timestamp

Mote: requests will be place back
in the main queus if they haven't
bea serviced within 10 minules.

—

matches request
color scheme on
cell paga

12



Help Screen

— =
Forklift Dispateh
help
main gueg
Request states:
caane T
- apen - request hasn't been accepted by an operator yet
cell name abandoned - regquest was accepl, but nol eompleted wilkin 10 minules mestamp
cell name assigned - an operator has accepted the request timestamp
in process - forklift has arrived at requesting cel .
cell name timestarmp
- complete - reguest has bean complated
cell name cancelled - cell has cancelled request
cell name Text with specific instructions on how to use curent view
cell name
cell name
b place back
Ok hey haven't
minutes.

|

Symbol will be displayed next to request color

13



Administration Screen

latest state change

Forklift Dispatch

[N call slale limesiamp usar material comrment

view log
search for request
adit calls

analytics

[

I

updatas are live; whenever a request
experiences a slale change, a new
enlry appears in the log

14




Standards

Danfoss Standards

Danfoss imposed many standards over the project. They included coding style, comment
formatting, color choices, and logo placement. First, Danfoss has a strict coding/commenting
style enforced by a software application called StyleCop. This requirement aids code
maintenance, developer productivity, and automatic documentation. The second standard
specified color choice and logo placement. This standard creates a uniform look and feel
across internal Danfoss applications.

W3C Standards

Web development standards were strictly adhered to, as the FRA is a web-based application.
The World Wide Web Consortium (W3C) is the main international standards organization for the
web. Specific standards they maintain are web design and applications, web architecture, XML
markup, and web enabled devices. The most relevant standards to the project are HTML, CSS,
and AJAX.

Software Development and Evolution Standards

The project utilized a waterfall methodology to structure the development process. First, the
team met with the client several times to hash out the functional and nonfunctional requirements
of the application. Next, several designs for each component were brainstormed and carefully
considered. Based on the requirements of the system and the given standards for the
application, decisions were made regarding the final design of the system. The design was
taken to the client for approval, and after minor revisions, the design was approved. The design
included: the database schema, the interface for both the Frontend and Backend web services,
user interface sketches, and a test suite framework.

Next came the implementation component of the project. Due to the planning in the design
phase, different components of the application were able to be developed in parallel. For
example, the software interface that was defined during the design phase allowed the Backend
component and the Frontend component to be written at the same time. As features of each
were implemented, they were combined and tested to verify basic functionality. Once the basic
functionality of the system was completed, the unit tests and user interface tests were run. The
results of these tests determined whether the project met the requirements specified by the
client. After any modification to the application, whether logic or user interface related, the suite
of tests was run to ensure the system still met the basic requirements.

The last step of the waterfall methodology is to maintain the application. After implementation at

Danfoss, there were small tweaks made to the application. These were necessary because of
the minor differences between the development and production environments.

15



Implementation Details

Views

Three distinct user views are implemented in this application. They are the “Forklift Operator
View”, the “Assembly Line Employee View”, and the “Administrator View”. The first two are
based on a similar layout, while the Administrator View is unique.

Forklift Operator and Assembly Line Views

As previously stated, the Forklift Operator and the Assembly Line View share a layout. These
two views are displayed using the Hypertext Markup Language (HTML) and Cascading Style
Sheets (CSS). HTML and CSS are standard in web development (see the standards section on
the previous page). To receive the HTML and CSS, a forklift operator or assembly line employee
navigates to the server hosting the application. The server then sends the HTML and CSS to the
user’s browser. The browser automatically renders both into content similar to the images in the
Screen Sketches section of this document.

HTML and CSS are static, so JavaScript is used to make dynamic changes to the View.
JavaScript is heavily intertwined with HTML and CSS and allows dynamic modifications the
page. In addition, JavaScript can communicate with the server post page load using a
JavaScript XMLHTTPRequest object, commonly referred to as an AJAX request.

This application makes heavy use of JavaScript. All changes a user sees post page load are a
result of JavaScript code executing and modifying the existing HTML and CSS. Using this
method reduces screen flickering, decreases network traffic, and aids application scaling.

As previously mentioned, when a view needs to exchange data with the server, it uses an AJAX
request. These AJAX requests go directly to the Request Controller on the application server.
The Request Controller processes the request and returns an appropriate response. This
response is in JSON, which stands for JavaScript Object Notation. JSON is used to represent
JavaScript objects in a serialized text form. Upon receiving this JSON response, the view
parses it into a JavaScript object, and performs any necessary operations.

Administrator View

In contrast to the previous views, the Administrator View follows more of a traditional web
standard. The Administrator View still uses HTML and CSS, but the user clicks hyperlinks to
modify the view. After a user clicks a hyperlink, the server responds with new HTML and CSS,
and the page is reloaded and rendered.

16



Controllers

The controllers of the application are what glue the Views and the Model together. View actions
requiring changes in the server state are forwarded to the Model, which executes these
changes. The application makes use of three separate controllers: Authentication, Request,
and Expired Request.

Authentication Controller and Request Controller

The Authentication and Request Controllers communicate with the Views using the HTTP
protocol. They each communicate with the Model using Microsoft Windows Communication
Foundation.

The Authentication Controller wraps around the Request Controller, ensuring only authorized
access to the model. Upon any unauthorized attempt, this controller immediately redirects the
user to the login page.

The Request Controller facilitates all forklift requests actions; this is the heart of the application.
There are three actions: create request, update request state, and retrieve request events.

Creating a Request

As mentioned in the Views section, when a user wishes to create a new request, the user enters
the appropriate parameters into the view. The view forwards the request to the Request
Controller via an HTTP call. The Request Controller parses this HTTP call, and extracts the
needed parameters to create the request. The parameters are validated and passed to the
model, where the request is created. Upon successful creation of the request, the model
returns the request’s unique ID. The ID is serialized into JSON, and returned to the view.

Updating a Request State

As mentioned in the Views section, when a user wishes to update the state of a request, he
selects said request and click the desired transition button. The view constructs an HTTP call
with the needed parameters (request id and transaction code), and sends it to the Request
Controller. The Request Controller parses the HTTP call, and extracts the parameters needed
to update the state of the request. The parameters are validated and passed to the model,
where the state of the request is updated. Upon a successful update of the state of a request,
the controller creates a JSON object. This JSON object is wrapped as part of a
HTTP/JavaScript response and sent back to the view.

Retrieve request events

A view can ask for new request events in the system. Each view does this automatically in a
loop, so that they have the most up-to-date state of the Model. To retrieve all new events, the
view creates a HTTP call to be sent to the controller. Upon receiving the call, the controller asks
the model for all requests. If there are no new events, the controller will continue to poll the
model for updates. This is referred to as Long Polling, and is described in detail in Appendix .
The resulting serialized JSON array, which is wrapped as part of a HTTP/JavaScript response,

17



is sent back to the view. It should be noted that this action takes an optional Timestamp called
“sinceTime”. The “sinceTime” parameter can be thought of in the following way: “Give me all
requests changes since time X”. This allows a view to receive only the updated part of the
dataset. This is useful and preferred if the caller already knows about all events up to time X.

Expired Request Controller

The Request Controller and views do not have the ability to delete requests or set them to the
abandoned state. This is where the Expired Request Controller comes into play. The Expired
Request Controller runs silently on the server, and does not need authentication to access the
model. There is no view associated with this controller.

The purpose of the Expired Request Controller is twofold: first, the expired Request Controller
checks all requests in the assigned state to see if any have been assigned for longer than 10
minutes. If so, the controller signals the model to set those requests as abandoned.

The second task of this controller is to remove all requests that are in any of the three final
states: completed, canceled, or rejected. Before removing a request, the service first extracts
all data about a specific request and writes it to the log table. There are two reasons for this:
first, logging the data allows for detailed analytics to be collected. Second, requests in their final
states are no longer needed for general use of the application, and removing them increases
performance. Both components of the Expired Request Controller are best effort services,
meaning they do not wait for a response from the model.

Model

The Model is the innermost layer of the application. As mentioned previously, the controllers are
written in C# and manipulate the data in the model. C# is an object oriented programming
language, meaning the forklift requests are treated as discrete “objects” that represent real world
items. For example, the FRA has request objects that contain attributes including part number,
description of a part, person requesting the part, and assembly line where the part should be
delivered. If the application stops, all the information contained in these objects is lost, unless it is
stored to a physical medium, such as a hard drive. To ease writing and retrieval of the
information stored on the hard drive, a database is used.

Per Danfoss standard, information is stored in a Microsoft SQL database, a relational database.
Instead of being stored as objects, like in the application, a relational database stores information
in logical columns and rows. Columns contain information of the same type, and are labeled
with a column name, such as part number or requesting user. Rows span across all columns
and represent a complete artifact. In the FRA, a request object contains the user requesting the
part, part number, part description, where the part should be delivered, an optional comment,
and a timestamp.

To map the C# objects to the Database an Object Relation Map (ORM) called Entity Framework
handles the mapping between the database, or model, and the object used in the C# application.

18



Testing

There were five types of testing used during the development of the FRA: Frontend, Backend,
Scalability, Connectivity, and Beta.

Front End

Frontend testing involves testing the user interface (Ul). This type of testing includes both valid
and invalid use cases. These tests are conducted by simulating user input, and checking for the
desired Ul behavior. For example, “the color of Item X after Button Y is clicked should be blue”.
Inputs include, but are not limited to: mouse clicks, finger taps (tablet), and keyboard input.

Ul testing is resource intensive, and error prone if performed manually. Furthermore, the
number of individual Ul tests grows exponentially with the number of possible Ul actions.
Because of this, a tool called Selenium was used to automate this process. Selenium records a
given Ul action, as well as the state of the Ul after the action is performed (e.g. move cursor to
Button X, click it, and ensure Button X is deactivated). Using Selenium, a collection of tests can
be compiled and run with the click of a button.

The power of automated Ul tests become apparent when the application is expanded or slightly
changed. Running the tests after a change confirms that previous functionality has not been
affected.

To date, all Frontend tests created pass with the current version of the source code.

Back End

Frontend tests are only able to test Ul content presented to the end user. To test the Backend
component of the project, the team used the nUnit framework. nUnit is a unit testing platform for
the .NET framework. Unit tests are used to ensure specific functions behave correctly, by

calling a function in the application, and comparing the actual output against the expected output.
For example, when testing a function squareRoot (int), a nUnit test might be

squareRoot (16) = 4. nUnit looks for that function to return 4, and will throw an error if this is
not the case.

In this project, Backend testing involved request state transitions. For example, a completed
request should not go to the in-progress state. On the other hand, an in-progress request
should always be able to transition to the completed state.

As stated above, manually conducting these tests would be tedious and error prone. A request

can be in one of 7 states, meaning there are 49 (7 * 7) possible transitions, 37 of them illegal, all
of which had to be tested.

19



Scalability

Frontend and Backend tests only answer the question “Does the application function as
expected?” “How well does it work?” is an equally important question. This is where scalability
and connectivity testing come into play. Scalability tests ask the question “How well does the
application work when X users are using the application concurrently?” Given the testing
hardware, an acceptable network connection, and software algorithms used throughout the
application, it was determined around 30 users could concurrently use the application without
noticeable lag (greater than a few hundred milliseconds).

Connectivity

Furthermore, how the application responds to network inactivity was also tested. Basically,
whenever a client computer has trouble reaching the server, it displays a message to the user,
disables input, and continues trying to contact the server until a connection is made. At that
point, input is re-enabled and the error message is removed. Connectivity testing is vital to this
application as half its users will be using the application over WiFi and will be moving between
wireless access points in the facility.

Beta

Last but not least is Beta Testing. Beta testing typically consists of giving early versions of the
application to actual users. This is done to solicit feedback, and help identify an bugs that
slipped through the other testing phases. In beta testing this project, an early version of the
application was shown to Danfoss employees, and used their feedback to improve the user
experience.

20



Appendix |: Operation Manual

Requirements:

e Microsoft SQL Server 2012
e Microsoft lIS 7
e Administrative privileges to install applications

Installation

1. Open Microsoft SQL Server Management Studio and connect to the MSSQL server
where the FRA database will be hosted.

2. Create a new database called “Forklift Request App”
3. Right click the newly created database and click “Import”

4. Select the FRA.sql file from the install folder and click ok. SQL server will build the
database schema.

5. Open the Microsoft [IS manager console.

6. Right click the “Web Sites” item on the left and click “Create new web site”
7. Enter “Forklift Request Application” as the site name

8. Enter the desired URL and port for the system. Click OK.

9. Return to the install folder. Double click the Backend installer.

10. Follow the prompts of the Backend Installer, which will place the appropriate files in the
web publishing folder created by IIS in step 8.

11. Once the Backend installer finishes, double click the frontend installer.

12. Follow the prompts of the Frontend installer

Starting the Server

IIS normally automatically starts newly created websites. In the off chance it does not, or your
wish to stop/restart the server go, to Microsoft [IS and complete the following steps:

1. Right Click on the Forklift Request Application web site

2. Select “Stop” or “Restart”

21



Requests States

To use the Forklift Request Application, it is important to understand the states requests can be
in. Each state has an associated color and symbol. For more explanation about request colors
and symbols, see the help screen, available in both the forklift operator and assembly line views
by clicking or tapping the “help” button.

e Open - Requests are initially created by assembly line employees. After a requestis
created, it is in the open state. Open requests are placed in the main queue, and are
viewable to all forklift operators. The assembly line employee who created the request is
referred to as the request owner. All requests created by an assembly line employee can
be viewed in the user’s personal queue.

e Rejected - If a request is incomplete or contains incorrect information, a forklift user can
mark it is rejected. This change is reflected on the request owner’s personal queue,
along with an explanation for why the request was rejected. The request owner can then
create a new request with the correct information.

e Cancelled - If a request owner no longer needs a request to be complete, he can cancel
the request. It is removed from the request owner’s queue, and if the request is open, it
is removed from the main queue. If the request has been assigned, it is removed from
that forklift operator’s personal queue.

e Assigned - A forklift operator can select an open request, and add it to his or her
personal queue. When a request is “assigned”, the change will be shown on the main
queue for all forklift users, and in the personal queue of the request owner.

e In-progress - Once a forklift operator starts work on a request, the forklift operator can
mark the request as “in-progress”.

e Abandoned - If a forklift operator is unable to service a request in 10 minutes, the
request becomes “abandoned”. It is removed from that forklift operator’s personal queue,

and placed back in the main queue, so another forklift operator can complete the request.

e Complete - once a request has been completed, it can be marked as complete by the
request owner or forklift operator

22



Assembly Line User

Login
1. Navigate to http://may14-34.ece.iastate.edu/Area.aspx

2. If you see a screen similar to the one below, you have successfully logged in. The buttons on
the left show your available actions.

Queue

Create

Help

Logout

If the application prompts for a login, your system is not configured correctly. Please contact the
Danfoss IT Help Desk at x1234. Provide the following information:

Your Name

An extension where you can be reached

The name of the PC you are on. This will be of the form PCxxxxx

The name of the department and/or department number

IT will configure the given PC to access the Forklift Request System. Once configured, you will
be able to use the system.

23


http://www.google.com/url?q=http%3A%2F%2Fmay14-34.ece.iastate.edu%2FArea.aspx&sa=D&sntz=1&usg=AFQjCNFBkDvGNonIwSXxeYiS_P2pFc5HIQ

Understanding Assembly Line User Commands

Once successfully logged in, there are several commands, some of which may not be available
based on the states of the requests in the queue.

Create a request
1. Click the “Create” button

2. The “Create Request” dialog will appear.

X Create Request

Contact User |

Part Mumber

Part Description

Comment

High Priority Request

OK

3. Enter the following information:

Contact User - The person to contact if there is a problem with this request. This will
likely be your name.

Part Number - Enter the full part number of the item you are requesting. Requests with
incomplete part numbers will be rejected. If you are requesting an “in area” operation,
enter 0000 for this field.

Part Description - Enter the description of the part. Be specific, as this will help the
forklift operator ensure prompt retrieval of the correct material. For example, use “Series
12 Housing” instead of “Housing.”

Comment - This is optional. If you have any special instructions for the forklift operator,
type them here. Limit: 450 characters.

High Priority - check this box if this is a high priority request. Typically, a request should
only be high priority if production will stop if the request is not serviced within 15 minutes.

24



X Create Request

Contact User Sample User
Part Number 0000
Part Description . Series 12 Housing

Comment A Sample Comment

High Priority Request

OK

4. Click the “OK” button at the bottom of the screen. If there is a problem with the request,
a dialog box will appear stating the problem. Correct the problem and click “OK” again.

5. The Create Request dialog box will close and the request will appear in the queue.

Queue

Logout

Note: You may close the “Create Request” dialog box at any time by clicking the X in the upper
left hand corner. This will not submit the request and all information in the form will be lost.

25



View request info

To view information about a request in your queue, select the request, and click the “View Info”
button. Note that the color behind the “Request Info” text at the top; this color is associated with
the request’s current state. Press the “OK” at the bottom of the screen to return to the main
screen.

Area: Area |

Forklift Operator: Unassigned

Part Description: Series 12 Housing
Part Number: 0000

Comment: ASample Comment
Contact User: Sample User

oK

Mark request as completed

To mark a request as complete, select the request in your queue (it will turn light blue when
selected), and click the “Mark as complete” button. Note that to make this transition, a request
must be in the “in-progress” state. After several seconds, this request will disappear from the
queue.

Queue

PN: 0000

7:19 PM

Create

Help

Logout

26



Make request as canceled
If you created a request that is no longer necessary, select the request from your queue, and
click the “Cancel” button. Several seconds, this request will disappear from the queue.

Queue

PN: 0000

7:19 PM

View help screen

To get additional help, click the help button at any time. Information about request states can be
found on this screen. Press the “OK” button at the bottom of the screen to return to the main
screen.

Help
OPEM Request yet to be accepted
ABAMDOMED Request not completed within 10 minutes
ASSIGNED An operator has accepted the request
IN PROCESS Forklift has arrived at requesting area
COMPLETE Request has been completed
CAMNCELLED Area has cancelled request
REJECTED Request rejected by forklift operator

OK

27



Enter “View only” mode

You can enter a “view only” mode by changing the URL from ending in Area.aspx to
ViewOnly.aspx. This will display the main queue without buttons. This mode can be used to
display the main queue on large monitors. Press the “OK” button at the bottom of the screen to

return to the main screen.

PN: 0000 forklift1 |

8:00 PM

Logout
To logout out, click the “Logout” button.

28



Forklift Operator User

Login
1. Navigate to http://may14-34.ece.iastate.edu

2. Enter your Danfoss assigned username and password and press “Sign In”.

2. If you see a screen similar to the one below, you have successfully logged in. The buttons in
the middle show your available actions.

Main Queue Forklift 1's Queue

Help

Logout

If the application prompts for another login attempt, either you entered your credentials
incorrectly, or your username is not configured as a forklift operator. If you encounter this issue,
please contact the Danfoss IT Help Desk at x1234. Provide the following information:

e Your Name
e An extension where you can be reached
e The name of the department and/or department number you work for

IT will configure your username to access the Forklift Request System as a forklift operator.
Once configured, you will be able to use the system.

29


http://www.google.com/url?q=http%3A%2F%2Fmay14-34.ece.iastate.edu%2FArea.aspx&sa=D&sntz=1&usg=AFQjCNFBkDvGNonIwSXxeYiS_P2pFc5HIQ

Understanding Forklift Operator User Commands
Once you are logged in, there are several commands, some of which may not be available
based on the states of the requests in the main queue and your personal queue.

Assign a request

If you are available to service a request from the main queue, select the request by tapping it. It
will turn light blue.

Main Queue Forklift 1's Queue

Assign To Me

View Info

Reject

Help

Logout

The “Assign To Me” button is now enabled. Press the “Assign To Me” button; the request will be
removed from the main queue, and placed at the bottom of your personal queue. If you have
many items in your queue, you can scroll up and down to view all your requests. The timer on
the left side of a request indicates how long you have to place the request in the “in-progress”
state. Otherwise, the request will be marked as “abandoned” and placed back in the main
queue.

Main Queue Forklift 1's Queue

PN: 0000 I Area 1

8:00 PM 00:05

Help

Logout

30



Mark request as in progress

After you have assigned a request to yourself, and you are ready to service it, place the request
in the in-progress state. To do this, tap the request; notice the “In Progress” button is enabled.
Tap this button, and the request will marked as in progress.

Main Queue Forklift 1's Queue

PN: 0000

8:00 PM

o
®
©

Mark request as completed

After you have completed a request, mark it as complete. Tap the complete request; the
“Complete” button is enabled. Tap this button and the request will be set as complete. After
several seconds, this request will disappear from the queue.

Main Queue Forklift 1's Queue

PN: 0000 J

8:00 PM

T
@,
©

Logout

31



Put request back in main queue

If you find you are unable to complete a request, you should put it back in the main queue so
other operators can service it. To do this, select the request; the “Put Back” button will now be
enabled. Click it, and the request will leave your queue and return to the main queue.

Main Queue Forklift 1's Queue

Help

Logout

Reject a request

If a request is incomplete or contains incorrect information, you can “reject” it. It is important to
note that rejecting a request will remove it from the main queue and notify the request owner. To
reject a request, select it; the “Reject” button will be enabled. Press the button, and the request
will be rejected. After several seconds, this request will disappear from the main queue.

Main Queue Forklift 1's Queue

PN: 0000 Area 1
8:00 PM

Help

Logout

32



View request info

To view information about a request, select it, and click the “View Info” button. Note that the color
behind the “Request Info” text is associated with the request’s state. Press the “OK” button at

the bottom to return to the main screen.

Area: Area
Forklift Operator: Unassigned
Part Description: Series 12 Housing
Part Number: 0000
Comment: A Sample Comment
Contact User: Sample User

OK

View help screen
To get additional help, click the help button. Descriptions about the request states can be found
on this screen. Press the “OK” button at the bottom to return to the main screen.

Help

i OPEN Request yet to be acceptad

Lo ABANDOMED Request not completed within 10 minutes

# ASSIGMNED An operator has accepted the request
- IN PROCESS Forklift has arrived at requesting area
COMPLETE Request has been completed
- CANCELLED Area has cancelled request
- REJECTED Request rejected by forklift operator

oK

Logout
To logout out, click the “logout” button.

33



Administrative User

Login
1. Navigate to http://may14-34.ece.iastate.edu

2. Enter your Danfoss assigned username and password and press “Sign In”.

2. If you see a screen similar to the one below, you have successfully logged in. The buttons

show your available actions.

Forklift Request Application

view log

Request Log

D area
Med Motors

(565 Med Motors

Med Motors

Med Motors

Med Motors
Med Motors
Med Motors

Med Motors
Med Motors

Med Motors
Med Motors

Med Motors
Med Motors
Med Motors

Med Motors
Med Motors
Med Motors
Med Motors
Med Motors

Med Motors

5735 Med Motors
5735 Med Motors

Med Motors
Med Motors
Med Motors

state state icon

canceled

canceled
assigned

canceled

=
-
-

assigned -
abandoned
assigned -
-
completed
in_process

abandoned
assigned =

canceled

abandoned
assigned =
0

canceled
abandoned
assigned -
abandoned
assigned -
-

canceled

-abandoned
assigned 5
-

completed

in_process

assigned -
-

timestamp
412212014 7:50:27 PM

4121/12014 5:54:44 PM
41212014 5:54:44 PM

412112014 5:54:44 PM

4/21/2014 5:54:44 PM
412112014 5:54:44 PM
4/21/2014 5:54:44 PM

4121/2014 5:54:44 PM
4121/12014 5:54:44 PM

412112014 5:54:44 PM
4/21/2014 5:54:44 PM

412112014 5:54:44 PM
412112014 5:54:44 PM
4/21/2014 5:54:44 PM

412112014 5:54:44 PM
412112014 5:54:44 PM
4/21/2014 5:54:44 PM
412112014 5:54:44 PM
41212014 5:54:44 PM

412112014 5:54:44 PM

412112014 5:54:44 PM
4/21/2014 5:54:44 PM

41212014 5:54:43 PM
4/21/12014 5:54:43 PM
4/21/2014 5:54:43 PM

user
areal

TestForklift
TestForklift

TestForkiift

TestForklift
TestForkiift
TestForklift

TestForkiift
TestForkiift

TestForklift
TestForklift

TestForkiift
TestForkiift
TestForklift

TestForklift
TestForkiift
TestForklift
TestForkiift
TestForklift

TestForklift

TestForklift
TestForklift

TestForklift
TestForklift
TestForklift

material

1

VY
NA

N/A

N/A
N/A
N/A

N/A
VLY

N/A
N/A

LY
N/A
N/A

LY
N/A
N/A
N/A
NA

N/A

N/A
N/A

NIA
VLY
N/A

N/A

comment

1

N/A
NA

N/A
NA
NA
NA

N/A
N/A

5740 Med Motors assigned - 412112014 5:54:44 PM TestForklift NA NA

N/A
NA

NA
NA
NA

NA
N/A
NA
N/A
NA

N/A

5735 Med Motors assigned - 4/21/2014 5:54:44 PM TestForklift N/A NIA

N/A
NA

NA
N/A
NA

N/A

If the application prompts for a login, your system is not configured correctly. Please contact the

Danfoss IT Help Desk at x1234. Provide the following information:

Your Name

An extension where you can be reached

The name of the PC you are on. This will be of the form AMSPCxxxxx
The name of the department and/or department number

IT will configure the given PC to access the Forklift Request System. Once configured, you will
be able to use the system.

34


http://www.google.com/url?q=http%3A%2F%2Fmay14-34.ece.iastate.edu%2FArea.aspx&sa=D&sntz=1&usg=AFQjCNFBkDvGNonIwSXxeYiS_P2pFc5HIQ

Understanding Administrative Commands
Once logged in, administrators can track all requests and manage the Forklift Request
Application’s users.

Adding and removing a User

On the left menu click “users”. This will direct you to the “Administer Users” page, showing a list
of all users. To delete a user, select the user, and click “DELETE”. To add a user, type their
name in the textbox, select their role, and click the “Add User” button. You can see that user
added to the user list.

Forklift Dispatch Administer Users

user! forkiift operator DELETE

ue2  assem bly line DELETE

user3 admin DELETE

Add a User]|

Forkiift Operator
Area Worker

- Administrator

35



Appendix II: Other Designs

Alternative Database Schema

Initially, two database schemas were proposed. The first held all requests as part of a single
table. After careful consideration, two major flaws with this schema were discovered. First, the
number of rows in the table would be large: the application is “read” heavy, and thousands of
rows would hinder the performance of the application considerably. Second, if each request had
its own row, it would be impossible to fully track the state transitions. Since this type of tracking
was desired by Danfoss, the second schema was selected and implemented.

“Pushing” Data from Server to Client

The team considered several methods for the server to “push” events to all connected clients
(web browsers). The application was constrained (as a web application) to run over HTTP
Protocol. HTTP is a “pulling” protocol or “half-duplex”. This means the client asks the server for
data, and the server cannot initiate data transfers to the client.

This issue can be illustrated from the following example: a client creates a Forklift Request and
informs the server. The server performs the action and returns “success” to the client. How do
other clients know about this new request? Remember, the server cannot “push” this event to
them.

There are many solutions for this issue. First are browser plugins, such as Adobe Flash and
Java. These plugins allow “full-duplex” communication, meaning the server can “push” data.
However, browser plugins add overhead, complexity, and dependency, and were not seriously
consider for this application.

A second solution is for each client to continually ask the server for new events. This is called
polling. Usually, the server responds “no”, and this solution is bandwidth heavy, inefficient, and
introduces lag to the system.

A slight variant of the second solution is called “Long-Polling” or Comet. Similar to polling, the
client continuously asks the server for more data, but in this case, the server keeps each
connection open until a new event has occurred. Upon a new event, the server responds to the
request. Then, the client reconnects and the process starts again. This solution removes the
lag and overhead mentioned above, but still requires the client to continually call the server.

A third solution is a new protocol called WebSockets, defined in RFC 6455, which was finalized
in 2011. WebSockets allow full-duplex communication, however they are not supported in
Internet Explorer 8, which Danfoss requires us to support. Due to this restriction, WebSockets
could not be used as a solution.

' https://tools.ietf.org/html/rfc6455
36



After careful consideration of each solution, Long-Polling was selected for the final design and
implementation. Long-Polling best fits the needs of the application and its functional constraints.

Alternative JavaScript Libraries

As discussed in Implementation Details, the Frontend is written in JavaScript, which is
supported on all modern browsers. Unfortunately, various web browsers will execute the same
piece of JavaScript code slightly differently. In other words, each browser has its own “dialect”.
A naive solution is to write multiple versions of the Frontend--one for each supported browser.
This results in duplicate code and creates maintainability issues.

Several JavaScript Libraries exist to address this issue. These libraries take native JavaScript
and “translate” it to each browser dialect. This allows developers to write once, and have code
that works uniformly across all browsers.

Some libraries include: MooTools?, jQuery?, and SyncFusion*. Each have benefits and
drawbacks. Because Danfoss uses jQuery, and the team was already familiar with it, jQuery
was chosen as the JavaScript library for this application.

Client Side Request Timeouts

As discussed previously, if a request is assigned to a forklift operator past an administrative
defined threshold, the request is automatically set to the abandoned state. The implementation
has an “abandoned checking” service, which runs continuously on the server. When the service
marks a request as abandoned, the server informs all connected clients.

The team considered another implementation, which would have the client keep track of the
abandoned state. Given the risk of users logging out of the application or losing network
connection, this alternative was deemed unacceptable.

Send All data or just new data?

When a user is navigating a traditional web-page and wants new data, he refreshes the page
and the server sends the entire page again. This method is simple, but less efficient than just
sending new data. The team decided to go with the second method (only new data) to reduces
server, network, and client load--especially when there is a large number of requests in the
database.

How Assembly Line Employees “Login”

Originally, all users were going to login via a Danfoss assigned username and password. The
application would look up the role associated with the username (i.e. assembly line employee,
forklift operator, or administrator) and redirect the user to the appropriate view. Later, Danfoss

2 http://mootools.net/
3 http://jquery.com/
4 http://www.syncfusion.com/

37



pointed out that Assembly Line employees always use the same workstation. Because of this,
Danfoss requested Assembly Line employees be automatically logged-in based on their station's
unique computer identification number.

Six Request States

The original design called for six request states. In January 2014, Danfoss requested the
addition of a rejected state. Because of the modular design of the application, the change was
trivial.

38



Appendix lll: Other Considerations

During the design phase of this application (EE/CprE/SE 491) other considerations and additions
to the application were suggested but never incorporated into the design or implemented. Time,
team knowledge, and Danfoss’ priority list are all valid reasons as to why the following
considerations never went beyond brainstorming.

HTML5 Analytic Graphs

Initially, it was planned that the application would be able to create detailed graphical analytics
over the growing forklift request dataset. Graphs such as “Average Completion Time” and
“‘Average Time Spent In-Progress” would be generated on-the-fly and presented to
administrators/managers at Danfoss via a webpage.

Danfoss already uses a graphical reporting solution called SSRS (SQL Server Reporting
Studio). After a few discussions with them, it was decided that creating the graphs from scratch
would be “reinventing the wheel” and add unneeded complexity to the application.

In place of the analytic graphs, SSRS reporting queries (which pull relevant data from the
application’s database) were created instead and given to Danfoss. All Danfoss has to do is
import those queries into the SSRS program and they can create all the graphs they need to suit
their needs.

Allowing the Addition of Request States

Initially, six request states existed with the plan for administrators to be able to add request
states via the administration screens of the application. In January of 2014, Danfoss wished to
include an additional request state: “rejected”. The application design is modular and allowed
for this addition with ease, however it was not as simple as adding the state to the database.
For this reason, it was decided that adding states on the fly could not be an option.

Allowing the Addition of User Roles

Initially, as part of project plan v1.0, adding user roles via the administration portion of the
application was to be allowed. Given the application behaves differently based on the currently
logged in user, adding a user role on the fly would not work. A completely different “view” of the
application would have to be created. While this would be easy to accomplish, it would require
development and a redeployment of the application. This means the developer modifying the
application could add the user role instead.

39



Auto Assigning of New Requests

A “feature” that never even made it to project plan v1.0 was auto assigning a new request to the
“least” busiest forklift operator. While the algorithm to complete this task would be relatively
simple, when suggested to Danfoss, it was immediately decided this would not be an
incorporated feature. Danfoss wanted the employees to be in complete control of what was
going on with very little artificial intelligence.

Providing a Map on the Forklift Operator’s Screen

Originally it was planed the application would place a detailed map of the Danfoss factory on
each forklift operator’s view. The map would display the forklift operator’s current position and
the position of the item he was going to retrieve. When presented to Danfoss, the idea was
described as overly complicated, error prone, and the algorithm would never be as intelligent as
an experienced forklift operator.

“Stacking” Request Timeouts

A “feature” never implemented or part of the design plan was “stacking” request timeouts.
Basically, when a forklift operator assigns a request to himself, a timer starts on that request. If
the operator does not complete that request before the timer runs out, then the request leaves
their queue and goes into the abandoned state. This timeout is set to a constant value.
“Stacking” these timeouts instead means setting the timeout higher based on the number of
requests in the forklift operator's queue. For example, assume the timeout constant is set to 5
min. Now consider that same forklift operator has a request in their queue with 2 min. left. If he
assigns another request to himself, the timeout for that request would be set to 7 min. rather
than 5 min. had “stacking” request timeouts been part of the design or implemented.

40



