
May 14-31
Detecting Sparse

Observation Zones

May14-31

Team Members:
John Harding (Cpr E)
Michael Ore (Cpr E)
Nicholas McLaren (Cpr E)
Andrew Upah (Cpr E)
Bryce Wilson (Cpr E)

Advisor:
Dr. Ruchi Chaudhary, Department of Biology, University of Florida

Client:

Prof. Gordon Burleigh, Department of Biology, University of Florida

The Team

May14-31

Project Overview & Problem

● Many databases share biodiversity data for biological
research and collaboration
○ e.g. The Global Biodiversity Information Facility &

The Avian Knowledge Network
○ Over 100 million bird observation records and

millions of other species data
● Helps to understand the patterns and dynamics of

various species across a region
● Interested in biggest regions with few or no species

records

May14-31

Problem Statement Formalized
Create a software tool that solves the following
problem:

Problem (Detect Sparse Observation Zones):

Input: a collection of latitude and longitude points, k, n.

Output: n latitude and longitude points with corresponding
largest radii such that there are no more than k points in the
respective circle of each point.

May14-31

Solution Overview

The algorithm we delivered:
1. Create a regularly spaced grid of points over Earth
2. At each grid point, find the largest radius that contains

at most k input points
3. Output the grid points and their radii as k-circles

This provides a good idea of how sparse the data is over
the whole area of interest

May14-31

Grid on Earth: Geodesic Grid

● Compared to planar grid:
● Pros:

○ Useful for both global and local data
○ Minimal distortion

● Cons:
○ Memory consumption
○ Wasteful for local data

May14-31

Maximizing Radius
● (k+1)-distance function, dk+1(x, y)
● Computable in O(klogN), N = # of input

points

k=4

May14-31

Output

● Evaluate dk+1(x, y) at each grid point, output
● Output Columns:

○ Latitude
○ Longitude
○ Radius
○ Grid Spacing

● dk+1(x, y) at grid points are good
approximations for space in-between

● dk+1(x, y) for largest grid point is good
approximation to global maximum

May14-31

Performance Analysis

● A = area of search space (Earth’s surface)
● g = grid spacing
● N = number of input points
● # of grid points ~ O(A/g2)
● Time to sample ~ O(klogN A/g2)
● Memory use ~ O(N + A/g2)

○ This is the bottleneck for low g

May14-31

Testing

● Some unit testing
● Optimal result compared to approximation for small data
● Performance testing:

○ 1,000,000 random input points, k = 1000
○ 10,485,762 sampling points
○ 45 minutes
○ 8 GB

May14-31

Simple Optimal Algorithm

● With a given set of
points

● Pick a combination of 3
● Create a circle from

these points
● Count points within the

circle
● Save circle's center and

radius if points inside =
k

● Runs in O(N4)

May14-31

Simple Optimal Algorithm

● With a given set of
points

● Pick a combination of 3
● Create a circle from

these points
● Count points within the

circle
● Save circle's center and

radius if points inside =
k

● Runs in O(N4)

May14-31

Simple Optimal Algorithm

● With a given set of
points

● Pick a combination of 3
● Create a circle from

these points
● Count points within the

circle
● Save circle's center and

radius if points inside =
k

● Runs in O(N4)

May14-31

Simple Optimal Algorithm

● With a given set of
points

● Pick a combination of 3
● Create a circle from

these points
● Count points within the

circle
● Save circle's center and

radius if points inside =
k

● Runs in O(N4)

May14-31

Simple Optimal Algorithm

● With a given set of
points

● Pick a combination of 3
● Create a circle from

these points
● Count points within the

circle
● Save circle's center and

radius if points inside =
k

● Runs in O(N4)

May14-31

Algorithm Implementation Details

The algorithm code was written in C++, using the library
CGAL (Computational Geometry Algorithms Library).

CGAL was chosen as it performs well and provided most of
the algorithms needed to build our algorithm.

May14-31

Parallelization

Results without parallelization:
● 2,000,000 sampling points with data set of approx.

350,000 points runs in about 94.2 sec

Results with 4 cores in parallelization:
● 2,000,000 sampling points with data set of approx.

350,000 points runs in about 94.1 sec

May14-31

GUI Design

May14-31

Overall Design

May14-31

Future Possibilities

● A faster optimal algorithm may be useful
● An iterative algorithm could find larger k-

circles centered near grid points
● Distribute points with constant memory
● Think statistically; what if the input points are

drawn from a larger population?

May14-31

Demo

May14-31

Questions

May14-31

Extra slides start here

May14-31

Basic Definitions
Geodesic Grid: a technique used to model the surface of
sphere with a subdivided polyhedron

Voronoi Diagram: A division of space using a set of input
points in which each point has the corresponding region of
all points in space nearer to that point than any other

May14-31

Basic Definitions
kth Degree Voronoi Diagram: A generalization of Voronoi
Diagrams. For any natural number k and given a set of
input points, a kth-degree Voronoi diagram associates
every input point with the region where that point is kth
closest

k-circle: A k-circle is a circle with k input points inside it

May14-31

Example Output
Latitude Longitude Radius (m) Grid spacing
(m)
3.3694030 -165.1577028 528304.0110501 4370.4272605
3.3701742 -165.2230401 527766.1398303 4371.1253014
-7.5518313 -1.7331102 527486.3614580 4390.6032108
3.3086040 -165.1926503 527411.5997402 4370.7009520
3.3093587 -165.2579801 527360.3486624 4371.3948051
-7.7376293 -1.8329856 527272.5754768 4390.4780559
1.6433310 150.0065616 527179.1483774 3617.1577611
-3.3504708 121.3624331 527115.6345737 4394.8683768
-7.7377402 -1.7674941 527096.1302746 4390.4134684
-3.7367498 -114.8439781 527085.7350453 4379.2457942

May14-31

2nd degree Voronoi diagram

May14-31

2nd degree Voronoi diagram

May14-31

Grid Spacing

May14-31

Design Approach

● Numerical optimization
○ Define a function d(x, y) that takes in the (x, y)

coordinates of the center of a circle and outputs the
largest possible radius it can have without including
more than k data points.

○ This is the same as the distance to the (k+1)th
closest data point. d(x, y) changes slowly, so its
value at sampling points approximate the values at
nearby points.

May14-31

Graphic Visualization Design

● prompts user for window boundaries
● read longitude, latitude, radius values from a txt.file
● draws points and circles to the map
● <latitude> <longitude> <radius>

