
CATCH: Collision Detection and Team Center Haptics

Introduction

The field of virtual reality (VR) has advanced greatly in the past few years. One factor continu-

ing to slow the advancement of virtual reality is its lack of reality. Haptic technology is adding

this missing reality to the virtual world by introducing tactile feedback to virtual interactions.

This allows the user to experience virtual objects through the use of force feedback, vibration,

or motion. While researchers like Dr. Vance have had success making use of these devices,

many companies that would like to use VR technology do not use haptics in their design pro-

cess for two reasons. The first is that the devices themselves are very expensive. The second

issue is a lack of commercial software support for the integration of haptic technology with ex-

isting 3D modeling software. CATCH seeks to demonstrate the feasibility of integrating a com-

mercial 3D visualizer with haptic devices.

CatIPSI
CatIPSI is responsible for interacting with the physics

scene and the haptic device. The simulation is run by the

IPSI physics engine API. CatIPSI is responsible for set-

ting up the simulation, loading provided objects, and poll-

ing device and object positions within the simulation sce-

ne, as well as any other interactions with IPSI.

CatVis
CatVis facilitates communication between the

visualizer and the rest of the program. This

module sends click messages to the visualizer

and receives various updates which it process-

es and forwards to appropriate modules.

CatJtk
CatJtk is responsible for converting Jupiter Tessellation

(JT) files into trimesh objects that can be added to the

physics simulation scene.This is done through the use of

the JT Open Toolkit API. CatJtk is used when loading a

JT assembly file into the physics scene.

CatContext
CatContext is the Facade class of the CATCH library. It

includes all construction, initialization, and callback func-

tions for the CATCH library. CatContext also includes all

of the functions an end user of CATCH needs to call.

CatCursor

CatCursor contains the primary process flow of

the CATCH library. It is responsible for control-

ling the execution speed and most inter-

module communication.

Requirements
Functional

 A cursor in the 3D visualizer will be manipulated by the haptic device

 Parts in the 3D scene can be selected, deselected, and manipulated by the haptic device

 Parts will be loaded into the scene from a standard 3D modeling file type

 Collisions between bodies will be calculated and haptic feedback is to be provided based on these collisions (this

is primarily performed by IPSI, not our software)

 The deliverable must run in a Windows 7 x64 environment

 The deliverable must be capable of interacting with 3D models with simple 3D geometry

 The deliverable must be capable of running in a CAVE environment

Non-Functional

 Teamcenter Visualization Mockup must be used as the 3D visualizer

 The modules must be written in C++ using Microsoft Visual Studio 2010

 The VisController API must be used to interface with the 3D visualizer

 The JT Open Toolkit API must be used for importing Jupiter Tessellation (JT) files into the physics engine scene

 The IPSI physics engine must be used for collision detection and interactions with the haptic device

 The software must interface with a Virtuose haptic device

 There must be less than 200ms lag time between input and output for best user experience

 After accounting for lag all objects must be synchronized between the physics engine and the visualizer

Use Cases

 Future VRAC projects to expand software capabilities (Users: VRAC students)

 In-house testing module at Siemens for the VisContoller API (Users: Siemens developers)

Testing
Due to the nature of the project as a proof-of-concept, it was decided that formal
testing wasn’t necessary. Instead, demos of the current project progress were
shown at client meeting. This not only helped with showing our current progress
to the client and validate our design, but it also helped us set reasonable goals
that could be accomplished between client meetings.

Each demo showed new or improved functionality. Initial testing was not done
with the haptic device but with either a six-degree-of-freedom mouse or Virtuose
Sim, a program that simulates the haptic device. Once enough functionality was
implemented, it was initially planned that CATCH would be tested with the haptic
device. By the time this point was reach in early March 2014, the haptic device
had to be sent to the manufacturer in France for emergency repairs. The haptic
device retuned on April 17th, 2014. At this point, we were able to test our library
with the device in METaL and validate that we successfully meeting all functional
requirements set forth by the client.

Outcome
The CATCH library has full functionality at this point. It is capable of interfacing

with the haptic device, providing force feedback, and synchronizing the scene in

the physics engine with the visualization scene. Overall, CATCH successfully

meets the requirements set forth by the client.

Functional Block Diagrams

Module Diagram

May 14-30:

http://seniord.ece.iastate.edu/may1430

Team:
Logan Scott

Matt Mayer

James Erickson

Anthony Alleven

Paul Uhing

Clients:
Dr. Judy Vance — Virtual Reality Applications

Center

Dr. Tsung-Pin Yeh — Siemens

Advisor:
Dr. David Weiss

Project Scope
We are designing and creating the CATCH library. All other

components including Teamcenter Visualization, JT Open

Toolkit, the IPSI physics engine, and the Virtuose haptic de-

vice were provided by our clients.

Initialization phase: In this phase, all of the

callbacks for the modules are initialized and the

scene is loaded in from a JT file.

Main Loop: This is the loop that runs until the program is terminated. The loop

samples the state of the physics engine and updates the visualizer with the new

position of all of the objects in the physics engine. Then, the device position in

the physics engine is used to update the cursor position in the visualizer.

Callbacks: The callbacks are steps that run occa-

sionally based on event input.

The top process triggers on a button state change

(if the button is pressed or released) and attempts

to select/deselect an object in the visualizer.

The bottom process triggers when CatVis is notified

of a state change from the visualizer. At this point,

depending on the message received from the visu-

alizer the program will attempt to attach or detach

an object from the cursor.

