Collision Detection and Teamcenter Haptics:
CATCH

Final Report

May 14-30
Logan Scott
Matt Mayer
James Erickson

Anthony Alleven
Paul Uhing

May 14-30, Collision Detection and Teamcenter Haptics: CATCH

Acknowledgements

Thank you to all that helped us achieve our goal. This includes ,but is not limited to, Dr. Vance
(VRAC, lowa State University), Pin (Siemens), Dr. Weiss (lowa State University), Jerome
(Haption), and other stakeholders who gave us useful input throughout the project.

Table of Contents

1. Introduction
1.1. Purpose
1.2. Problem Statement
1.3. Requirements
1.4. Dependencies
2. System Design
2.1. Module Overview
2.2. Module Guide
3. Implementation Details
3.1. Initialization
3.2. Main Control Loop
3.3. Callbacks
4. Module Design Rationale
4.1. CatContext
4.2. CatCursor
4.3. CatIPSI
4.4. CatVis
4.5. Catdtk
5. System-Level Technical Challenges
5.1. Transformation Representations
5.2. Transformation Manipulation
5.3. Memory management in C++
6. Testing
6.1. Testing Procedure
6.2. Results
6.3. Outcome
7. Reflection

A.1 Appendix |: Operations Manual

A.2 Appendix II: Alternatives

A.3 Appendix Ill: Other Considerations

A.4 Appendix IV: Definition of Terms and Acronyms

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 2

1. Introduction

1.1. Purpose
This document contains relevant information including the design, implementation, and
functionality of CATCH. CATCH is a standalone library for integrating 3D modeling
software with a haptic device, developed as a senior design project in the Department of
Electrical and Computer Engineering at lowa State University. This document provides
insight into the design process of the group as well as describes both high-level
functionality and low-level design of our project for use by anyone who would want to
build upon our work.

1.2. Problem Statement
The field of virtual reality has advanced greatly in the past few years. One factor
continuing to slow the advancement of virtual reality is its lack of reality. Haptic
technology is adding this missing reality to the virtual world by introducing tactile feedback
to virtual interactions. This allows the user to experience virtual object through the use of
force feedback, vibration, or motion. While researchers like Dr. Vance have had success
making use of these devices, many companies that would like to use this technology do
not try to use haptic technology in their design process for two reasons. The first is that
the devices themselves are very expensive. The second issue is a lack of commercial
software support for the integration of haptic technology with existing 3D modeling
software. Our project is a proof of concept demonstrating integration of TeamCenter
Visualization, a physics engine, a haptic arm, and 3D model file types. TeamCenter
Visualization is a common commercial application used to model 3D objects. Our
application will demonstrate this integration by allowing a user to interact with the haptic
arm to manipulate a cursor in Teamcenter Visualization, manipulate parts in the scene
using the cursor, and allowing collision detection to occur between parts. Based on this
collision detection, the user will experience haptic feedback such that they are unable to
push a part “through” another part.

1.3. Requirements

1.3.1. Functional

1.3.1.1. The cursor in the 3D visualizer will be manipulated by a haptic
device.

1.3.1.2. Parts of the 3D assembly can be selected, deselected, and moved
by the chosen haptic device.

1.3.1.3. The parts in the scene will be loaded into the said scene from a
standard 3D modeling file type.

1.3.1.4. Collisions between parts in the scene must be detected and
appropriate haptics feedback should be provided.

1.3.1.5. The library must run on a Windows 7 x64 environment.

1.3.1.6. CATCH must be capable of interacting with 3D models containing

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 3

1.3.1.7.

simple geometry.
The library must run in the CAVE environment in the METaL lab at
lowa State.

1.3.2. Non-Functional

1.3.2.1.
1.3.2.2.
1.3.2.3.
1.3.24.
1.3.2.5.
1.3.2.6.
1.3.2.7.

1.3.2.8.

Teamcenter Visualization Mockup must be used as the Visualizer.
VisController APl must be used to interface with the 3D Visualizer.
JT Open Toolkit must be used to support loading of part geometry
via Jupiter Tessellation (JT) files.

Must use the IPSI physics engine from Haption for collision
detection and interactions with the haptic device.

CATCH must interface with the Virtuose haptic device from
Haption.

The lag time between input and output shall be less than 200ms
for best user experience.

All public modules and functions shall be documented to the extent
at which they could be recreated by a third party.

After accounting for lag time, all object models shall be
synchronized.

1.3.3. Use Case
The CATCH library has two main use cases. It could be integrated in to future
projects created by VRAC students. The second use case is for in-house testing
of Siemens VisController API.

1.3.3.1.

1.3.3.2.

VRAC students who are working with the Virtuose haptic device or
other similar devices could use our library to integrate new
capabilities for use with the METaL Cave environment.

Siemens is currently in the process of developing the VisController
API used in this project. The CATCH library could be used for in
house testing of this API with the goal of eventually making a
version of VisController API that would allow companies to make
use of haptic technologies using Siemens software.

1.4. Dependencies
This section describes external libraries or applications that were not developed by the
CATCH team. In other words, the functionality of the following libraries and functions are
used by the CATCH modules, but the CATCH modules are in no way responsible for
implementing the fundamental value that these underlying libraries have created.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 4

IPSI

Interactive Physics Simulation Interface, the physics engine produced by Haption
to be used for collision detection.

JTOpenToolkit
The library being used to interface with JT files.

VisController

Teamcenter Visualization Controller, the API that controls interaction with
Teamcenter Visualization

Teamcenter

Teamcenter Visualization, the tool produced by Siemens PLM Software that will
be used to display 3D model representation

2. System Design

2.1. Module Overview
The CATCH library can be broken down into five separate modules: CatContext,
CatCursor, CatIPSI, CatJtk, and CatVis. Each module has been designed to hide design
decisions from the end user as well as from the other modules. Figure 2.1 shows the
high level module interactions.

CatContext- This module contains the public facing interface to be used by external
users/applications using the CATCH library. This module also contains callback
implementation for intermodule communication within the CATCH library.

CatCursor- This module contains the main control loop of the library. It is responsible for
all periodic polling for both the manipulation device transformation and model
transformations from CatlPSI and transferring them to CatVis.

CatlPSI- This module directly communicates with the IPSI physics engine provided by
Haption. The messages sent between IPSI and CatIPSI include all model mesh
information, model transformations, and Virtuose state. Note that all haptic feedback and
collision calculations are performed entirely by IPSI (provided by our clients) and not our
application. The API used to communicate with IPSl is also credited to Haption.

CatVis- This module interacts with Teamcenter Visualization using the VisController API.
CatJtk- This module is primarily responsible for using the OpendToolkit library to parse
model assemblies, stored as JT files, into individual triangle meshes to be added to the

physics engine.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 5

CatContext(Facade)

Visualization

(Figure 2.1) Diagram of the modules of CATCH and their interactions with other modules; and
applications, APIs, and devices outside of the CATCH library.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 6

2.2. Module Guide

This section describes the modular structure of the project by breaking down each
module into the services, secrets and issues. This guide should help any future parties to
better understand our design. A service is defined as the functionality a module provides.
A secret is a set of design decisions that are hidden in the module that other modules
need no knowledge of the different secrets. Issues are series’ of questions that arose
during the design of the project that influenced the design of the module.

Behavior Hiding CatContext
CATCH Softwa.re: Besiga CatCursor
Hiding
CatlPSI
APl Hiding R CatVis
CatJtk

(Figure 2.2) CATCH module hierarchy with mapping to variabilities and parameters of variation

2.2.1. Behavior Hiding Modules

Behavior hiding modules include any program requiring changes when the output
or interaction with the code as a whole is changed. Their secrets relate to the use
of the library.

2.2.1.1. CatContext

2.2.1.1.1. Service
CatContext contains the public-facing interface to be used by
external users/applications using the CATCH library. It provides
high-level methods to initialize the CATCH modules and begin
execution. This module also contains callback implementation for
intermodule communication within the CATCH library.
Additionally, it provides the service of initializing modules.

2.2.1.1.2. Secret

This module contains information about how to use the other
modules and the initialization process.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 7

2.2.1.1.3. lIssues
Issue: Should CatContext only contain the user interface
functions?

(Option 1) Yes, this module is meant to only be a bridge between
the CATCH library and its users. Therefore any other functionality
should be placed in another module.

(Option 2) No, due to CatContext’s position as the facade the
initialization process is included as part of the user interface. This
means callback functions should be defined here in order to
register them elsewhere.

Resolution: Option 1 would truly hide all other functionality from the
end user if this user is looking at the top level CATCH source code.
Because of the inherent link between the user interface and
initialization, other function must be defined here, Option 2. A good
example of this are callback functions which must be defined
before they can be registered to other modules. Therefore, Option
2 was chosen.

2.2.2. Software Design Hiding Modules
Software design modules hide the software design decisions based on our
programming requirements. This generally relates to the interaction between
modules and the speed and efficiency of process execution.

2.2.2.1. CatCursor

2.2.2.1.1. Service
CatCursor unifies all modules by facilitating data flow between
modules.

2.2.2.1.2. Secret
CatCursor hides the overall program flow by controlling the
sequence of data transactions. It also actively governs the
execution rate of these transaction, which in turn regulates the
speed of CATCH as a whole.

2.2.2.1.3. Issues
Issue: Should CatCursor convert all transformation matrices it
sends/receives into a “standard” transformation representation to
be used throughout the application?

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 8

(Option 1) Yes. Because CatCursor is the means through which
the other libraries communicate at runtime, it should be written as
an adapter to convert between the different transformation
representations.

(Option 2) No. CATCH should take a more modular approach,
such that CatCursor should only have to transfer data between
modules and not modify it. All modules needing to send/receive
transformation information (e.g. CatlPSI, CatVis) are responsible
for converting its transformation data to/from a “standard”
representation to be passed throughout the application.

Solution: Because we wanted to strive for modularity and
consistency throughout our application, Option 2 appeared to be a
better solution. We selected our “standard” transformation
representation to be that of IPSI, so all modules wishing to
send/receive data must first convert that data to IPSI’'s format.

2.2.3. APl Hiding Modules
API hiding modules are the programs that must be changed if an APl is going to
be replaced by another, for example if a new physics engine is to be used then
one of the following modules should be replaced. The below modules’ secrets
relate to how they interact with their respective APlIs.

2.2.3.1. CatlPSI

2.2.3.1.1. Service
Interact with the physics engine: CatlPSI provides the means to
simulate the 3D scene. It also provides the means to interact the
Virtuose haptic arm and other devices. This provides position and
other information about the scene back to the system.

2.2.3.1.2. Secret
This module contains the secrets about how to simulate and
manipulate the scene with a haptic arm and the corresponding
haptic feedback. In addition, this module is responsible for adding
all model vertices to the physics engine in the form of triangle
meshes.

2.2.3.1.3. lIssues
Issue: Interfacing with the Virtuose, haptic arm. The information
about the haptic arm needs to be accessible from both the physics

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 9

engine as well as from our main application so that we can render
its location to the screen.

(Option 1) Use the Virtuose’s API through our application to
manually update the location of the device and provide haptic
feedback.

(Option 2) Use IPSI’s built-in interface to communicate with the
Virtuose and poll the device position through IPSI.

Solution: We decided to use IPSI’s built in interface because
although this would give us less flexibility when interacting with the
virtuose, it also greatly simplifies our system and provides an
interface for interacting with other generic input devices as well.

2.2.3.2. CatVis

2.2.3.2.1. Service
Display and interacts with the scene. CatVis takes data from other
parts of the project and pushes the data to the visualizer in a
format that allows the display to update as the scene changes.
CatVis must also be capable of receiving information from the
visualizer so it can let the rest of the modules know if a part has
been selected when a button is pressed. The visualizer used in
this project was Teamcenter Visualization, which is developed by
Siemens.

2.2.3.2.2. Secret
The secret of this module are the protocols used to interact with
the visualizer and the other modules. This module has to be
capable of both sending and receiving data to both the visualizer
and the other CATCH modules.

2.2.3.3. CatJtk

2.2.3.3.1. Service
Load JT files: CatJtk provides the ability to convert JT files into
objects that CatlPSI and the physics engine can use to simulate
the scene.

2.2.3.3.2. Secret
CatJtk hides how to read and convert JT files into objects that can
be passed into the physics engine scene. It also handles the
conversion of JT files into triangle meshes.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 10

2.2.3.3.3. Issues
Issue: Handling primitive shape types. In a JT file, there are two
ways to describe an object. One way is to use tri-meshes and the
other is to use primitive shape types. For example, a primitive
cylinder is defined only by its radius and length, but does not
contain the vertices to actually build the shape using a triangle
mesh.

(Option 1) Don’t deal with primitive shape constructs. Because of
the small scope of the project, a JT assembly without primitive
shapes could be selected for our test assembly.

(Option 2) Include the primitive shape usage. Many of the simpler
JT assemblies available for use by our demo could contain
primitive shapes removing many JT assemblies from
consideration.

Solution: We decided not to implement the primitive shape usage.
The physics engine in use by CATCH can only have models input
by specifying the vertices and indices of a shape. In order to
support primitive shapes, we would have to implement
conversions for all of the supported primitive shapes in JT Open
Toolkit. Due to the scope of our project, we did not want the extra
overhead of implementation and testing to support these shapes.
Therefore, only JT assemblies made entirely from meshes can be
loaded into CATCH at this time.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 11

3. Implementation Details (From a Process Perspective)

3.1. Initialization

Start CATCH

Set callback
functions

Load IT file

Start physics
simulation

(Figure 3.1) Initialization procedure of CATCH

3.1.1. Initialize

Upon initialization, CATCH creates modules, creates an empty physics
simulation, checks licenses, waits for VisController client to connect and passes
module references to CatCursor. This is achieved by first instantiating the four
modules CatlPSI, CatVis, CatJtk, and CatCursor, and then calling each

respective init() method on the modules.

3.1.2. Set Callback Functions

Callbacks are registered for adding geometry, processing button changes, and
receiving selection state updates. The actual implementations of these callbacks

live inside of the CatContext source code, and are set using

CatJTK::setTrimeshCallback(), CatIPSI::setButtonStateChangeCallback() and

CatVis::setSelectionStateCallback() respectively.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH

3.1.3. Load JT file

A file containing model meshes is loaded into CATCH by use of the CatJtk
module. On each traversed part within the JT file, a triangle mesh will be
generated and passed to the callback function set in above step, wherein the
callback calls CatIPSI::AddTrimesh() to add the part to the physics engine.

3.1.4. Start Physics Simulation

At this point, all part data has been added to the CatIPSI. Signal to the physics
engine to freeze bodies, enable collisions, and set the device baseframe with
CatlPSI::startSimulation();

3.2. Main Control Loop

Start Sampling loop

Current Object
selection state

Poll current object
position from
Physics engine

Update cursor
position in
visualizer

Process visualizer
selection attempt

Update Visualizer Poll device position
with object position from physics engine

(Figure 3.2) Main control loop procedure of CATCH

3.2.1. Start Sampling Loop
Marks the beginning of the infinite loop that runs when CatCursor::run() is called.

3.2.2. Current Object Selection State

Obtain the current selection state within CatVis, i.e. whether or not a part is
currently selected by the cursor, and retrieve the NGID of the part selected.

3.2.3. Poll current object position from physics engine

Using the NGID obtained from CatVis, poll the current part transformation from
CatlPSI by use of CatIPSlI::poll().

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 13

3.2.4. Update visualizer with object position
If a part transformation is obtained for a selected part in the physics engine, the
part transformation is immediately updated in the visualizer with the new
transformation with CatVis->setTransform().

3.2.5. Poll device position from physics engine

Obtain the current device transformation from the physics engine by use of
CatlPSI::pollDevice().

3.2.6. Update cursor position in visualizer
Update the cursor transformation in the visualizer with the device transformation
using CatVis>setCursorTransform().

3.3. Callbacks

Callbacks

On button New stateis

Deselected

state change button pressed
Mo
v v
Tell visualizer
to deselect Tell visualizer
object to select object
On object .
selection State New.object Selected
selection state
change

Y

Detach device
from object in
physics engine

Attach device
to object in
physics engine

(Figure 3.3) Part selection callback procedure

3.3.1. On button state change
This callback is registered with CatIPSI. Whenever CatIPSI polls the device
position it also checks the button state of Virtuose by use of the IPSI API. The
callback function itself lives in the CatContext source code.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 14

3.3.1.1. New state is button pressed

The behavior of the buttons on the Virtuose in CATCH is based on
whether or not the button is currently being held down. Pressing the button
triggers a selection attempt. To remain selected to an object, the user
must keep holding the button down. As soon as the user lets go of the
button, the part is deselected. In short, the selection state in the visualizer
is driven by the button state of the device.

3.3.1.2. Tell visualizer to deselect object

When the new button state is not pressed, CatVis uses the VisController
API to deselect the currently selected part with CatVis::deselectAllParts().

3.3.1.3. Tell visualizer to select object

When the new button state is pressed, CATCH attempts to select a part
using CatVis::attemptSelect(). A part will only be selected if the cursor is
currently touching it when the button is pressed.

3.3.2. On Object selection state change

This callback is registered with CatVis. For every part action that happens in
Teamcenter Visualization, the VisController API calls an inner callback in CatVis
that notifies CATCH whenever a part has been selected. CatVis exposes an outer
callback to CatContext to trigger certain events when a part is selected in
Teamcenter.

3.3.2.1. New object selection state
The behavior when an object changes selection state is fairly straight
forward. Essentially, the visualizer drives the attachment state of parts to
the representation of the Virtuose within the physics engine. When a part
is attached to the device, the part tries to transform along with the device.

3.3.2.2. Detach device from object in physics engine

Detaching the device from whatever object it is currently attached to in the
physics engine is accomplished with CatIPSI::detachDevice().

3.3.2.3. Attach device to object in physics engine

Attaching the device to an object within the physics engine requires use of
an NGID to specify which part to attach to. This NGID is one of the things
polled for by CatCursor within the main control loop. Attaching is
accomplished with the method CatlPSI::attachDevice(std::string oid).

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 15

4. Module Design Rationale

This section describes the design decisions and rationale behind how the main service of
each module was implemented.

4.1. CatContext

4.1.1. User-accessible Functionality

CatContext was designed to be the facade module of CATCH. It handles
interaction with users of the library and registers all intermodule callbacks.
Because this is the external-facing module, we wanted to provide cleaner,
high-level methods of initializing and running the CATCH library. To fully
utilize the CATCH library, only three functions need to be called:
CatContext::loadJtFile(), CatContext::init(), and CatContext::run().

4.1.2. Intermodule Communications Callbacks
Because of our focus on a modular approach in designing CATCH, we
chose to handle much of the inter-module communication by using
callbacks to allow data to pass between modules without requiring these
modules to know about one another. By registering inter-module callbacks
during initialization, each module is more easily replaceable, if needed.

There are three callback functions contained within the CatContext
module. These are hidden from the user, as they are not included in the
CatContext header file:

callback__jtGeometryTolPSI(): This callback is responsible for
transferring geometry information from CatJtk to CatIPSI. During
initialization, it is registered to CatJtk to be called at runtime. When
initiated, the provided geometry mesh information is passed to CatIPSI by
calling CatlPSI::addTrimesh().

callback__buttonStateChange(): This callback is responsible for
communicating haptic device button state changes from CatIPSI to
CatVis, and is part of the part selection process. It is registered to CatIPSI
during the initialization process. Whenever IPSI detects that a button is
pressed / release, this callback is triggered and CatVis is notified of the
change by calling CatVis::attemptPartSelection() or
CatVis::deselectAllParts(), respectively.

callback__partSelectionStateChange(): This callback sends any changes

in part selection state and, if necessary, the ID of a new object that should
be attached to the haptic device in the physics engine. This callback is

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 16

registered to CatVis during the initialization process. It is triggered after a
part selection attempt or part deselection occurs. If an object is selected
or deselected, CatlPSI is instructed to either attach or detach the
manipulation device (i.e. the Virtuose) to the object by calling
CatlPSl::attachDevice() or CatlPSI::detachDevice(), respectively.

4.2. CatCursor

CatCursor was designed to be the most “centralized” module in the CATCH
project. Its initial purpose was to keep track of the cursor position, as well as any
other state management required by the application. Later, as the CATCH design
began to solidify, it became apparent that there is little need for state
management in CATCH, as most necessary state is stored by IPSI and
Teamcenter. Because of the desire for CATCH to follow more of a “plug-and-play”
design, (e.g., a new physics engine could potentially be introduced and a CatIPSI
could be replaced by a new interface), it was decided that CatCursor should not
be involved with the implementation details of the API-facing modules. Instead,
CatCursor’s role is to simply transport data between modules; it does not perform
any operations on the data itself. Because the APIs used by CATCH require
polling to get new data, CatCursor is in charge of the following three duties:

A. Requesting data from our main API facing modules (CatVis and CatIPSI)

B. Sending polled data to the module that requires it

C. Controlling the rate of execution

CatCursor only has one primary method: CatCursor::run(). This function
launches a while loop that begins by sleeping the active thread by an amount of
time that will result in the loop executing at 30 iterations/sec. This sleep time is
determined by the following formula:

Cl kL'urrent_ C[kprevium‘
expexcted o

T T

sleep =

where T, ... IS the expected execution frequency of the loop (1/30th of a
second, or 33.3ms), CIk .. is the starting clock cycle of this iteration, CIK . ious
is the starting clock cycle of the previous iteration, and f,, is the clock frequency
of the application. After this sleep, CatVis is polled for the currently selected part.
If a part is selected, CatCursor requests the transformation (i.e., position and
orientation information) of the corresponding body in the physics simulation from
CatlPSI, and forwards that data to CatVis to update the 3D rendering. Similarly,
CatCursor then polls for the transformation of the manipulation device (Virtuose)
from CatIPSI and sends that to CatVis to be rendered as the cursor. CatCursor
deals very little with how those transformations are represented, allowing
changes in the data representation without changes to CatCursor.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 17

4.3. CatlPSI

CatlPSI was designed to act as a generalized interface between the IPSI API and
CatCursor. The Intent is for the Interface to be general enough to be able change
physics engines with minimal APl changes.

When we add bodies to IPSI we add a separate triangle mesh for each body in
the simulation. A triangle mesh is a list of vertices, and list of indices that describe
how the vertices are connected into triangles. Then we specified an overall
transformation for the completed object. These are received from CatJTK through
a call back, and added to IPSI through the IPSI API. when we add each of thes
files we also give the Cat IPSI module the NGID from the JT file. We use a map to
translate between the NGIDs and the bodylIDs that are internal to IPSI for the
object. This way IPSI’s Ids are segregated to only the module that directly
interacts with IPSI and they are hidden from the rest of the program.

When we need to poll the position of a body in IPSI we pass the NGID of the part
into CatIPSI and using the map that was mentioned earlier we translate it into the
body id. We then poll the position of that specific body in the simulation.

When we need to poll the position of the manipulation device we just call the
ManipulationDeviceGetPosition() method and return the transformation matrix to
the calling module.

Whenever the Device position is polled the Current button state of the device also
polled. This checks if the button state has changed and if the button was pushed
it triggers a callback to attempt to attach an object to the device through CatVis. If
the button is released then the body is detached from the arm. Deselection
occurs when the selection is attempted and there is no object within the cursor. It
is implemented this way because VisControler does not currently support the
deselection of parts via callbacks.

Simulation step size is set during the initialization of CatlPSI and cannot be
changed at run time.

4.4, CatVis
Similar to the decision behind creating CatIPSI to hide physics engine interaction
details, CatVis generically represents a 3D visualizer; it acts as a generalized
interface between CatCursor and the VisController API. It provides methods for
performing operations such as selecting or deselecting a part, sending updated

VisController utilizes a number of callback interfaces to notify subscribed listeners
about relevant events that have occurred. By registering callback functions with

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 18

VisController, CatVis is able to track relevant Teamcenter state information, such
as the position of the camera within the scene (by receiving the view transform),
or the currently selected part(s) within the scene.

The view transform retrieved through the Viscontroller View Callback is needed to
convert the cursor position back into world coordinates when the camera view
changes. When cursor coordinates are sent through Viscontroller, they are
applied to the cursor in the frame of the camera. Without accounting for the view
transform, the cursor would remain in the same position relative to the screen
when the camera moves. This behavior does not work since it causes the
Teamcenter cursor location to become out of sync with the IPSI device
transformation.

When CatVis::AttemptSelection() is called on CatVis, it uses the VisController API
to perform what is equivalent to a click in Teamcenter. Typically the user has
alreadyThis action is asynchronously performed, and the result is obtained
through the PartActionCallback registered with VisController. References to that
part are saved within the CatVis state. External classes can access the selected
part’s NGID, but they cannot retrieve any of the VisController API specific
information.

To modify the selected part’s transformation within the Teamcenter visualization,
the public CatVis::setPartTransform() method is used. The input transform, which
is part rotation matrix and part translation is converted to a full row major 4x4
transformation matrix and set to Teamcenter using the VisController API function
sendPartAction().

In CatVis one limitation is that there isn’t a method to set a part’s transformation if
that part isn’t already selected. When trying to implement this functionality we ran
into difficulties crafting a VcPartData object from scratch that VisController would
accept. This issue prompts further investigation and may be a chance for further
work. Transforming a selected part works well since the VcPartData object is
created from within the VisController API.

Deselecting a part in CatVis represents a difficult challenge when using the
VisController API. Even though a SendPartAction(DeselectAll) type function exists
in the VisController API, it is not currently implemented . To overcome this
limitation we have to perform an action similar to moving the cursor away from

the part and clicking twice on the background. CatVis combines the functionality
of attemptSelect() and setCursorTransform() methods to perform a deselect.This
happens in less than 100 ms and sometimes timing issues occur when multiple
clicks are not registered due to their short time interval.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 19

4.5. CatJtk

4.5.1. Implementation Details
The main service that CatJTK provides is to load a JT file, convert part
representations into triangle meshes, and expose those triangle meshes to be
loaded into the physics engine. The design rationale for CatJTK is mainly a
discussion of the implementation of the method CatJtk::loadJTFile(std::string
filepath).

CatJTK uses the OpendTToolkit API to do most of the heavy lifting. OpenJtToolkit
traverses the JT hierarchy, calling the CatJTK implemented callback of type
JtkTraversActionCB for each part that is traversed. Therefore this is really only a
discussion of how the traversal Callback is implemented.

The callback procedure for each node of the JT file is as follows:

If the node is of type JtkPART the corresponding NGID is extracted as the path to
the node. The global transform for the part is calculated by looping through each
parent multiplying matrix transformations until the root node is reached. Polygons
within the part are then added to a JtkTriangleStrip. That triangle strip is packaged
within a CatTrimeshJtk object and exposed to the rest of the CATCH library
through the TrimeshCallback. CatTrimeshJtk exposes the vertices and indices of
the triangle mesh representing a part within the assembly.

if the node is of type JtkINSTANCE, the node is used for calculating NGID and
global transform but is not directly used to access polygonal information. Instead
the original part reference is acquired and used in a similar way as the JtkPART
case.

CatJTK currently works on only a subset of possible JT file configurations. Files
cannot contain nested JtkKASSEMBLY types, as it is assumed that the file is made
entirely out of parts, and instances, in a single assembly. Secondly, CatJTK only
operates on files made up entirely of parts expressed as polygons. It does not
work with files that use primitive data types such as spheres or cylinders to
express shape information.

In order to avoid maintaining an internal memory store with CatJTK, the callback
pattern is used to allow part information to be accessed as soon as it has been
parsed from the JT file. The tradeoff being that if external modules wish to store
that data in the long run, they would be responsible for allocating their own
memory for it. This pattern works well in the case of CATCH since the IPSI

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 20

physics engine provided by Haption already tracks its own mesh data within the
simulation. By using the callback pattern, memory allocation is kept at a minimum
while still allowing a high degree of modularity.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 21

5. System-Level Technical Challenges

5.1. Transformation Representations

VisController & OpenJTToolkit
Matrix Representation

As double[1l6]
Each number represents it’s index in
the double array

Rewritten to match the form of a
classical 4x4 array

0o 1 2|12
3 4 513 Indices [12], [13], [14] are
6 7 8/14 the x, y, and z translation
g 10 11|15

Indices [0] — [8] represent Indices [9], [10], [11] are
a row major 3x3 rotation typically 0, and [15] is
matrix typically 1

VisController, OpenJTToolkit, and
IPST
Quaternion Representation

As double[4]
Stored as scalar last

Q=a+ bi + cj + dk

Rewritten to match the form of
X y z W quaternion terms

quat [0] X =Db
quat[l] =Y = ¢
quat[2] = 2 =d
quat[3] = W = a

IPSI (Physics Engine)
Matrix Representation

As double[1l6]
Each number represents it’s index in
the double array

Rewritten to match the form of a
classical 4x4 array

0 3 ¢/12 Indices [12], [13], [14] are
14 7113 the x, y, and z translation
2 5 814
9 10 11|15

Indices [0] — [8] represent Indices [9], [10], [11] are
a column major 3x3 typically 0, and [15] is
rotation matrix typically 1

IPSI double[7] Transformation
Representation #2

Array is split into Position and
Orientation

double[7] M
Position:

M[0] = x coord
M[1] = vy coord
M[2] = z coord

Quaternion:
Q =a + bi
M[3] =
M[4]
M[5] =
M[6]

+
b
=cC
d
a

Il
P SIS

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 22

5.2. Transformation Manipulation

Part transformations from JT file to IPSI physics engine

CatlIPSI

Part
Transform

CatJTK Transpose

Rotation

Part transformations from IPSI physics engine to
VisController API for Teamcenter Visualization

CatlPSI

Part
Transform

Transpose
Rotation

Cursor transformations from IPSI physics engine
to VisController APl for Teamcenter Visualization

CatVis

CatlPSI

Cursor
Transform

Transpose
Rotation

To Position +

. . Quaternion
View Matrix

May 14-30, Collision Detection and Teamcenter Haptics: CATCH

CatVis

VisController

VisController

23

5.3. Memory management in C++
Because this application was the first large C++ project for most of our team, we
encountered a number of problems related to memory management practices in C++.
Many of the module interfaces were designed with data scope and lifecycle in mind.
Generally speaking, we opted to have each module allocate and “own” any data needed
for that module’s operation for the duration of its lifecycle. If that data is required to be
updated by an external module, pointers or references to that data are passed to that
module so that the original location in memory can be updated. Although this seems to
be a good practice for ensuring that relevant data remains in scope for the entire duration
of execution, we still encountered many confounding problems in memory management
when passing data references to our project dependencies (e.g. IPSI or VisController).
For example, because of the many ways that strings can be represented in our
application (including C-style strings, std::strings, and vector<byte> objects), it often
became difficult to determine where that memory was allocated, and who “owned” that
data and its respective lifecycle. Much of these problems were avoided by eventually
allocating buffer memory on the heap to store data with confusing or unknown owners,
and ensuring one module owned that newly allocated heap data.

6. Testing

6.1. Testing Procedure
The testing protocol for CATCH was determined by our client specifications and our
meetings with our client. Very early on in the project our client made it clear they were
only looking for an application that will be used as a proof of concept to demonstrate
specific functionality within a limited use case. Therefore no strong testing requirements
were placed on the project. With this in mind it was decided to prototype and demo the
current state of the project at bi-weekly client meetings. For these incremental demos we
used devices other than the Virtuose haptic arm. In its place a six degree of freedom
mouse or the Virtuose Simulator provided by Haption was used as the manipulation
device for many of our demos. Once we had confidently achieved minimum functionality
using the simulator and/or space mouse, we began testing with the Virtuose itself in
METaL. Testing with the Virtuose was very helpful for debugging issues with the physics
engine and visualization scene. It also helped the optimization of haptic feedback.

6.2. Results

The main software deliverable of first semester was to get our application to move the
cursor in Teamcenter visualization. We were successful in doing this but the transforms
for the cursor were not correct. Next we focused on correcting these transformations and
correctly adding Bodies to IPSI. Once the ability to manipulate parts in Teamcenter
Visualization through VisController was added we found that the transformations of our
parts and cursor did not match. We figured out that the way the transformation matrices

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 24

were being stored in memory was different in both VisController and IPSI. It took a while
to figure out where we needed to transpose our matrices and how to convert between
them to get everything working correctly. This was aided by discoveries we made when
trying to attach the device to a body at an offset. After that was figured out we were able
to correctly transform the cursor and bodies while applying responsive amounts of haptic
feedback to the Virtuose. So in the end we were able to load parts from JT files in to our
physics engine. Transform them in Teamcenter Visualization using the VisControler API.
Then we were able to manipulate them using the haptic device while providing the user
with appropriate haptic feedback.

6.3. Outcome
The CATCH project was able successfully demonstrate current functionality at our client
meetings throughout the year. We were able to incrementally extend functionality so that
we had something new to demo almost every two weeks. We ended up with a prototype
that successfully met all of the clients’ requirements and exceeded their expectations.

7. Reflection

This project experience has taught our group many things about working with haptic technology,
physics engines, visualization software and the issues associated with integrate multiple APls
especially when they all are attempting to represent the same thing. One of our biggest learning
experiences dealt with memory allocation in C++. We know it would be an issue at the start of
the project and we did find an acceptable solution but as we reached the end of the project we
realized there were many things that we could have done better in this respect.

One of our biggest issues our project encounter was dealing with transformation matrices. We
ran into issues with standard matrix transforms and quaternion representation. We ran into this
issue when dealing with the device position in the physics engine. We would retrieve the device
position for the cursor and read the device base frame in quaternions, but when we needed to
set the device base frame the physics engine expected matrix representation. This was very
confusing because we expected to set the position in the same form that we retrieve it. The
other major issue we had with transformation matrices was the different way different APIs
represented the same transformation in different ways. It took a long time to map the
transformation matrices between the physics engine and VisController, this was a huge issue
that blocked our progress for a large period.

The physics engine we are using does block the ability to complete some basic tasks. One

issue is the voxel resolution settings. This affects the ability to put a cylinder into a round hole.
The physics engine is interpolating all of the triangle mesh objects a sets of cubes. This will
cause the false collision that are not actually occurring. This will occur due to the relatively large
voxel resolution setting of 2mm needed for optimal haptic feedback from the device. The physics
engine also eats up large amounts of memory. This is why CATCH was set up to interface with
the physics engine over a network. When we tried to load an average JT assembly with an
average number of part and and the physics simulation was wanted to use 16GB of memory.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 25

This is a major issue with the scalability of this project that would need to be agresed by the API.
This is probably meant to be used with large worlds where there are things like desks and chairs
not tightly bound parts that are meant to be disassembled.

The VisController APl is still in development and could be improve in order to make the haptic
interface better. Our one major issues involves the way parts are deselected. There should be a
way to deselect parts without having to click on empty space. From a user perspective it makes
much more sense to hold down a button on the device to select a part and the release the button
to release the part. Clicking on empty space in order to deselect an object makes sense for a
standard visualization software but doesn’t work well in immersive environments used with
haptic devices.

While CATCH has successfully proved the viability of integrating haptics into commercial
visualization software there are definite improvements that would improve CATCH. Currently
CATCH is really only useful as a standalone application currently. The CatCursor module would
need to be modified in order to make CATCH truly just a piece of larger whole. CatJtk also needs
to be modified to work with all types of JT files. This includes the addition of support for JT
assemblies that contain sub-assemblies and the ability to convert primitive geometry types into
triangle meshes. It is also important to add change the view in the visualizer based on the
position of the users head. This would increase the immersion of the user. This involves both
updating the view matrix in the visualizer and the device base frame in the physics engine. This
is something that could be test using the head tracking system already available in METaL. It
would also be nice to add the ability to select multiple parts at one time. This could be useful if
there are multiple devices connected to the same simulation scene or if a large number of small
parts need to be relocated at one time. Finally, it is imperative so solve the voxel resolution and
memory issues we encountered with the physics engine. This might have to be resolved by
switching to a different physics engine or working with Haption, the designers of the physics
engine to have more options for this type of application.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 26

A.1 Appendix |: Operations Manual

METal Render Node METal Head Node

TeamCenter
Visualization

<filename=>.jt test file <filename=.jt test file e
Screen 1 ' '

Haptic Server

TCP/IP

Screen 2

Last known Configuration for METal

Virtuose

o <head node ip>:9999

e <render node ip>:3131#5002

Screen 3

e <IPSI server ip>:810

(Figure A.1) Layout of METal and location of resources on Head and Render node

Running CatContextTest Demo in METaL: Step-by-Step Instructions

Build Instructions
1. Do a'git clone' of the CATCH repository, if needed
2. Open up the 'CatContext' solution in Visual Studio 2010
*Note: Visual Studio 2010 SP1 is required
Set the project to be built in 'Release’ and 'x64' mode at the top of the screen
Set 'CatContextTest' as the StartUp Project
5. Build the CatContext solution (not the CatContext project)

B w

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 27

Configuration

0. METaL lab setup/Virtuose setup
Resources and instructions for METaL projectors/Virtuose are available through VRAC
resources and will not be included in these instructions. These are available to authorized
users at:

https://intranet.vrac.iastate.edu/twiki/bin/view/Thel ab/VanceGroup

Users must be trained on METaL lab procedures prior to executing this demo.

1. Head Node: Set IPSI IP address
In CatContextTest.cpp, verify that the correct IPSI IP address is set to be used. This is
the IP address that the project uses to access the physics simulation during initialization.

In this case, IPSI is running on the same machine (the head node), so the IP address
should be 127.0.0.1.

2. Head Node: Configure IPSI to use Virtuose Haptic Server

Open the “Device Configurator” for IPSI (shown in Figure A.2), available at:
C:\Program Files\HAPTION\IPSI\Server\V2.10\bin

If not already present, add a “Virtuose 6D 35-45” device to the list of configured devices.

Set the Address field to be the IP address of the of the render node, the local (head node)

port to be used, and the remote (render node) in the following format:
<RemotelP>:<LocalPort>#<RemotePort>

At the time of writing, this IP address is:
192.168.1.21:3131#5002

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 28

https://www.google.com/url?q=https%3A%2F%2Fintranet.vrac.iastate.edu%2Ftwiki%2Fbin%2Fview%2FTheLab%2FVanceGroup&sa=D&sntz=1&usg=AFQjCNE3RyJFRy_iqb3xAlcP-wFNO11ifg

IPSI Devices configurator

_ (o x|
— Device — CoberlElove

Kind |VIRTUDSE_3D_15_25 =] | [z Caupling

Name [virtuose 30 15-25 |Local Space Mouse [

Index of couplin
Address [152168.112 o |
i Properties

~— Pasitian [m] COM |2 BaUD |1152EIIJ vI

% | of v | 0z Ul Por [ZE5 siee [iEFT o
— Orientation [7] _|_ EyberT auch mode

x[o=l v [o=l z2[o=

aid | Eat | memowe |

| Tupe | Address |
Yirtuoze 60 35-45 YIRTUOSE_BD_35 45 132168.1.21: 313145002

I arne

(Figure A.2) Correct “Device Configurator” configuration

3.Render Node: Configure Teamcenter

Teamcenter needs to be configured with the correct VCD, SCD, and ImmersiveConfig
files. These files can be found at:

\doc\TcVis_config_files\METaL_Configuration

Copy these files to C:\Temp before using.

To load configuration files for CATCH using METaL projectors, open Teamcenter and
navigate to File->Preferences->Immersive Display->Configuration, and select the correct
ImmersiveConfig file.

*Note: in the ImmersiveConfig file, the path to the head node must be correctly
specified. At the time of writing, this value is:

<VisController>
<Server name="192.168.1.20:9999"/>

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 29

</VisController>

In the VisController APl, Teamcenter serves as the client, where CATCH acts as the
server (by using the VisController.dll) Additionally, up-to-date VisController DLLs must be
on the machine to support the functionality that CATCH uses.

4, Render Node & Head Node JT file setup:

Put the JT model file that you wish to use for the demo at locations that are available from

both machines. It can be two separate files as long as they are identical. The JT file must

be one that doesn’t contain nested assemblies, and only contains geometry in the form of

polygon meshes. The two files recommended for use are
\Catch\CatJtk\CatJtkTest\test_shapes\asm_no_scale.jt
\Catch\CatJtk\CatJtkTest\test shapes\garage door_opener_reduced.jt

This garage_door_opener file has some parts removed for usability. The small gear is
the only part that can be moved due to the generated Voxel maps being very tightly
bound.

5.Head Node: Tell CatContextTest to use the correct JT file:
There are currently two ways of specifying which JT file to load with CatchContextTest:.

Option 1: define the JT_FILEPATH macro at the top of CatchContextTest.cpp
Usage:
#define JT_FILEPATH <File Path>

Example:
#define JT_FILEPATH
"C:\\siemens_tcvis_haptic_13-14\\Catch\\
CatJtk\\CatJtkTest\\test_shapes\\asm_no_scale.jt"

Option 2: Specify a file argument when starting CatContextTest
Usage:
CatContextTest <File Path>

Example (executed via command line):
CatContextTest
"C:\\siemens_tcvis_haptic_13-14\\Catch\\
CatJtk\\CatJtkTest\\test_shapes\\asm_no_scale.jt"
(All as one line)

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 30

Starting the Demo

Assuming that METaL projectors are turned on (as per the METaL user guide) and the
Virtuose is ON and connected...

1. (Head Node) Verify that no IPSI console windows are still open on the machine running
IPSI server. Teamcenter should be off.

2. (Head Node) Start CatContextTest and wait for the “Waiting for VisController to connect”
message.
*Note: The CatContext solution builds all executables to the folder:
\Catch\CatContext\x64\Release

Once the demo is started, the info messages displayed in the CatContextTest console
window should indicate whether or not CATCH connected to the Virtuose successfully.

3. (Render node) Start Teamcenter.
4. (Render node) Open the JT file to be used for the demo.
5. (Render node) Click the checkbox in the model viewer so that it is visible in the visualizer

6. (Render node) Start Immersive mode in Teamcenter by either typing Alt+ C + | + A or
clicking Concept->Immersive Mode->Activate . At this point, Teamcenter should connect
to the CATCH demo program running on the head node. If it doesn’t, check the
immersive mode configuration and verify the correct IP address for the head node is
entered as the VisController Server.

*Note: Each time Teamcenter enters Immersive mode and is then deactivated,
the Teamcenter application must be restarted before being able to reconnect to
CATCH.

7. Wait for the JT model to load in CATCH, until the message “IPSI Simulation Started”
appears in the console.

8. The demo has now been started and you should be able to manipulate the immersive
cursor with the Virtuose and see it on the projectors. Note that it is important that the view
is not manually rotated within Teamcenter. This is because the cursor is always
multiplied by the inverse view transform. If the view is rotated, moving forward with the
virtuose will move the cursor in a direction that does not feel like forward with respect to
the viewer. Instead the cursor always moves forward with respect to the global frame.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 31

9. When restarting the demo, remember to close any IPSI console windows that are
keeping the simulation alive. If the demo is restarted without doing this, it will fail with an
RPC error.

Using the Virtuose in the Demo:

1. Push the middle red button in order to lock the cursor in place and readjust the virtuose to
any position. This is useful for when the cursor starts too far away from the model and
must be moved closer in a series of translations.

2. To select a part, move the cursor over a part until it is highlighted in Teamcenter. Press
and hold the left button.

3. While a part is selected, move the Virtuose to move the part. Appropriate haptic feedback
will be produced if the selected part collides with another part in the assembly.

4. To deselect a part, let go of the left button on the Virtuose.

Using CATCH Library:

Required Libraries
CatContext.lib
CatCursor.lib
CatlPSl.lib

CatVis.lib

CatJTK.lib

Includes:
#tinclude "memalloc.h"

*Note: This is required for RPC
#tinclude "CatContext.h"

Code:
This section demonstrates the simplicity of using the CATCH library from a coding perspective.
Only four functions need be called to setup and run the CATCH library:

Catch::CatContext* catContext = new Catch::CatContext(IPSI IP);
_catContext->init(SIMULATION MAX_OBIJECTS,

IPSI_STEP_TIME, IPSI_RESOLUTION);
_catContext->loadJtFile(JT_FILEPATH);
_catContext->run();

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 32

Demo project:
If you have access to the CATCH repository, open up the CatContext solution to have a fully set
up solution with correct relative paths to dependencies:

\Catch\CatContext\CatContext.sIn

Note: this project only works in x64 Release build mode due to dependency limitations.

Debugging Notes:

Debug Output

Throughout the source code you will find commented blocks of print statements
that can be used to display useful debug output, such as transformation matrix
values.

Using a Space Mouse

By default, the project is set up to use the Virtuose only, but during our
development we found that it was useful to also be able to use a 3D space
mouse. In order to use the space mouse, uncomment the line found in
\Catch\shared\CatUtil.h:

/I#define USE_SPACE_MOUSE

When the space mouse is enabled, only the space mouse may be used as input
(not the Virtuose). Similarly, without the space mouse enabled, only the Virtuose
can be used.

Additionally, TeamCenter can be configured to run on a single desktop monitor
while in immersive mode, instead of a 3-sided CAVE environment. Configuration
files for doing this can be found in \doc\TcVis_config_files

Using the Virtuose Simulator

1. Build the project without USE_SPACE_MOUSE defined
2. Launch the Virtuose Simulator application (do NOT push the 'Power On' button)
3. Launch the CatContextTest application. Wait for the application to indicate that it
is waiting for a VisController connection.
Push the 'Power On' button on in the Virtuose Simulator window.
Launch Teamcenter Visualization (TcVis).
In TcVis, open the JT file specified in CatContextTest.cpp.
In TcVis, enter Immersive Mode by navigating to:
Concept>Immersive Display>Activate (or press Alt+C+I+A)
8. The application is now set up. The simulator can be used to manipulate the
cursor in TcVis.

No ok

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 33

About Licensing:

Teamcenter Visualization Mockup, IPSI (physics engine), and JT Open Toolkit all require
licences for use. The IPSI licences must be pointed to manually when a program using the APl is
run on a computer for the first time. At VRAC, this licence will likely be located in the root of the
C:\ drive with the computer's MAC address as the licence file name and a .lic extension.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 34

A.2 Appendix Il: Alternatives

A.2.1. Virtuose API

Before we knew that IPSI had native support for the Virtuose as well as several
different types of input devices, we considered having the Virtuose API contained
in its own module.This module would have been responsible for polling device
position and sending haptic feedback forces back to the device. After we realized
that this was not a necessity we decided to make a more generalized module that
contained both the haptic device and the physics engine, enabling us to make use
of this built in native support for the device.

A.2.2. Visualizer at the Center

Initially when we talked with our client about the project the Siemens it sounded
like the project was supposed to be centered around the visualization software.
CATCH would update the physics scene with the position of the objects. Then the
physics engine would detect collisions and report back any haptic feedback
feedback forces. After investigating the physics engine we discovered that it
made more sense to update the visualizer with data from the physics scene. The
physics engine could already represent devices and use the input from a device
to transform objects. This original idea assumed that the physics scene couldn’t
represent a device, once this idea was shown to be incorrect we talked to our
client about changing the design specifications.

A.2.3. Using the Physics Engine for Part Selection
When we reach the end of the first semester, VisController didn’t have have the
ability to send part selection information yet and we were a little nervous. We
discussed how to mitigate this issue that could have seriously blocked our project
from being completed. We discussed selecting parts through the physics engine
and then updating the visualizer with the part data. We decided against this
because our client completed this feature of VisController early on this semester.
This ended our ability to consider this implementation because our client wanted
us to test this feature so proposing an alternative when their APl was ready was
not going to be an option.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 35

A.3 Appendix Ill: Other Considerations

The chosen testing approach caused a major unexpected consequence with our design

process. In mid to late February when CATCH was almost ready for testing with the Virtuose, Dr.
Vance’s research group was having issues with the Virtuose functioning properly. It was later
found that the device had multiple malfunctioning boards that required the entire device to be
shipped to Haption (in France) for repairs. The haptic device was gone from March 13th, 2014
until April 17th, 2014. This significantly reduced the amount of testing time available with the final
configuration of the project. Because of this, we were unable to implement some additional
features the library due to the additional time spent debugging the library with weaker testing
parameters.

The next risk was caused by VisController API. Siemens is currently developing this API so there
was no way to know when features of this APl would be ready and available to our development
team. This was mitigated by our iterative implementation and testing strategy.

Another risk that persisted throughout development was our uncertainty in the way each library
formatted its representation of a 3D transformation. Each library we interacted with has its own
way of representing a transformation matrix. Some libraries also employed the use of
position/quaternion combinations to represent 3D transformations.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 36

A.4 Appendix IV: Definition of Terms and

Acronyms

Term / Acronym

Definition

Callback A callback is a mechanism by which a routine can be set to be
executed from within an underlying class. A callback is essentially a
function pointer that is called by an inner class to to signal an
important event. When the callback is executed, user defined code
can handle the event along with accompanying data.

CATCH Collision Detection and Teamcenter Haptics

IPSI Interactive Physics Simulation Interface, the physics engine produced
by Haption to be used for collision detection.

JT A data format for 3D models developed by Siemens PLM Software

Jitk JT Open Toolkit, the software being used to interface with JT files.

NGID New Genereration Identifier is a construct used by the VisController

API to refer to specific parts within a JT file assembly. The term “OID”
or “Object ID” may refer to this as well.

Space Mouse

A term used to describe a handheld device that can be used to
manipulate a 3D scene with 6 degrees of freedom (X, Y, Z, Yaw,
Pitch, Roll).

TCVis Teamcenter Visualization, the tool produced by Siemens PLM
Software that will be used to display 3D model representations.
Transformation Translation, Rotation, and Scaling of vertices

Triangle Mesh

A triangle mesh is a set of triangles that describe a three-dimensional
surface.

VisController

Teamcenter Visualization Controller, the API provided by Siemens
PLM that controls interaction with TCVis.

Virtuose

A haptic arm produced by Haption that is capable of manipulating a
3D scene and providing haptic feedback.

May 14-30, Collision Detection and Teamcenter Haptics: CATCH 37

