
ISU VRAC TACTILE VEST 
 
 

Team May14­23 : Ben Andry, Garrett Phelps, Ryan Haack, Jacob Cramer, and Cyle Dawson 
Client/Advisor: Dr. Stephen Gilbert 

Last Edited on 
11/14/13 

 

Garrett Phelps 
 

Version 1.3 

 
 
Version 0.1 | Ben Andry | 09/10/2013 
-Initial Document Creation 
Version 0.2 | Garrett Phelps, Ryan Haack | 09/19/2013 
-Rough draft of Problem statement 
Version 0.3 | Garrett Phelps | 09/24/2013 
-Rough draft of UI description + concept sketch 
Version 0.4 | Ryan Haack | 09/27/2013 
-Added list of deliverables and requirements. 
Version 0.5 | Garrett Phelps | 10/07/2013 
-Added risks and mitigation section 
Version 0.6.1 | Ryan Haack | 10/09/2013 
-Added Market/Product study, Operating Environment, Assumptions and limitations, Definition of 
terms, Table of Contents, Resources 
-Updated User Requirements, added organization and formatting to project plan 
Version 0.6.2 | Garrett Phelps | 10/09/2013 
-Updated Deliverables, User Interface Description, Resources, Definitions of terms, organization to 
project plan 
Version 0.7 | Ryan Haack, Jacob Cramer, Ben Andry | 10/10/2013 
-Added Milestones, Reference to WBS, System Block Diagram, System Description 
Version 1.0 | Ryan Haack, Jacob Cramer, Ben Andry | 10/11/2013 
-Added Appendix A and checked for errors. 
Version 1.1| Ryan Haack | 10/23/2013 
-Moved Table of Contents, resized pictures in concept sketch, added to 1.3.2, 1.4, 3.3.3 from Gilbert’s 
comments 
Version 1.2| Ryan Haack | 11/7/2013 
-Updates to 1.3 and Work Plan 
Version 1.3| Garrett Phelps | 11/14/2013 
-Updates to the concept sketch and the UI description 
Version 1.4| Garrett Phelps | 04/18/2014 
-Updates to UI and adding OSG information. Replaced instances of tactor with tactor 

   



Table of Contents 
 
 

Definition of Terms 
1) Project Breakdown 

1.1 Problem Statement 
1.2 Operating Environment 
1.3 Assumptions and Limitations 
1.4 Market/Product Study 

2) Approach and Design 
2.1 Concept Sketch 
2.2 User Interface Description 
2.3 System Block Diagram 
2.4 System Description 

3) Design Requirements 
3.1 Functional Requirements 
3.2 Non-functional Requirements 
3.3 Deliverables 

4) Work Plan 
4.1 Team Member’s Tasks 
4.2 Schedule/Milestones 
4.3 Work Breakdown Structure 
4.4 Risks and Mitigation 
4.5 Resources 

 

 
 
 
 
 
 

https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.xzuc7ag9por7
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.xr4uq57j9k3v
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.p2hp0j9quxf6
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.uifk3vwyc3zn
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.571kpje17nd6
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.2tmoestn36u7
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.sfenwmi2dzgz
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.tdnwk41x00ex
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.a55xxfjm3vbd
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.1n459d46xh7g
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.1n459d46xh7g
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.unvenkenot8r
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.6rw5oax4zn9l
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.jet53g2nfkim
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.k7hprijr04a1
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.omvo0k2ya6ve
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.s2fs06xv6pax
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.xdtu1trdj7bt
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.d4a2qsq66qmy
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.6286l1dxf6i8
https://docs.google.com/a/iastate.edu/document/d/sEbuOxgGBmaJhoxLETUPnAw/headless/print#heading=h.s6xsfph3bvpn


1) Project Breakdown 
 

1.1 Problem Statement 
The VRAC is currently receiving funding from the United States Army for a virtual 

reality training simulator. The MIRAGE a mixed-reality research lab  fitted with IR sensors 
and a fully functional game engine. Applicants can use this simulator to experience 
combat simulations at a much lower cost and setup time than setting up an 
environment with paid actors.  

This project is to develop an API for communication to off-the-shelf vibrating 
tactors on tactile vests that applicants would wear within the MIRAGE. These tactors 
vibrate whenever an applicant is “shot” within the simulation. The tactors could also be 
used as communication for navigation.  Our main task is to set up an API and UI 
configuration so the tactors can be placed anywhere on the vest, which will then be 
able to identify the location of the tactor on the body. The API will be used to send 
signals to these tactors from a central command i.e buzz shoulder tactor1. The API will 
also need the ability to send multiple signals with predefined patterns and must be 
generic enough so that it can be easily called from any piece of software as a type of 
plug-in. 

 
 
1.2 Operating Environment 

The primary operating environment for our program will be Linux but should be 
compatible with Windows. We will create a serial connection to the tactors and write 
our API using C++. The user interface will be coded using the Qt application to help us 
achieve our cross compatibility goal.  Our API will be the communication between the 
MIRAGE game engine and the tactile vest.   Our API will be fully compatible with any 
application in need of serial connection to a device. 
 
1.3 Assumptions and Limitations 

1.3.1 Assumptions 
○ VRAC has set up a git repo 
○ tactors, transmitter, and military vest will be provided 
○ Simultaneous signals can be sent with better hardware 
○ tactors must be configured before use 

1.3.2 Limitations  
○ Vibration strength of tactors  
○ Hardware restrictions for simultaneous signals 



○ Operating range of tactor approximately ¼ mile 
○ Battery life of tactor approximately 48 hours 
○ Export control regulations limit us to  showing source code to only US 

citizens 
○ Final project deadline is May 2014 

 

1.4 Market/Product Study 
There have been previous user studies of a tactile vest. There was a prototype of 

a vest with a solenoid on the chest. It was not practical because of dangerous amount 
of battery charge the user had to strap to his/her back and the extensive delay to 
recharge the solenoid mechanism. Another idea were arduinos but they aren’t intuitive 
or cost effective.  

The benefits of using tactors are the cost, safety and efficiency. The tactors can 
be attached to a vest and easily replaced if one breaks during regular use. One major 
concern with the tactors is the vibration strength. When trying to simulate being shot, 
there should probably be more pain or sensation than a simple vibration. We need to 
find a way to either strengthen the tactors or use multiple tactors in one area to 
“double” or “triple” the vibration.  

One major concern of this project is the ability to signal two tactors 
simultaneously. There has been one solution to program an identical tactor ID to all 
tactors that you want to page at the same time.  We would like to find a solution that 
does not restrict us to programming the same IDs because these tactors can only be 
programmed within 20 seconds of being removed from the charger. This would also 
limit us because we would have to predetermine which tactors we want to have the 
same IDs and then those tactors are the only ones with the ability to be paged 
simultaneously.  

There have been various other studies that we have discussed with our advisor. 
Vibrators can be used in watches to treat “Freezing” for people diagnosed with 
Parkinson’s. “Freezing” refers to a person who suddenly stops and feels that they are 
frozen in place. A simple vibration can wake these people up. We also talked about the 
optimal frequencies for different body parts because different body parts have optimal 
vibration sensitivities.  
 
 
 
 
 
 



2) Approach and Design 
 
2.1 Concept Sketch 
 

The spots to place the tactors on the vest will be the shoulders, stomach and 

also on the back. Multiple tactors can be placed in these spots to further increase the 
intensity of the vibrations if necessary. The vest has velcro for each location for the 
tactors to stay in place. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.2 User Interface Description 
The user interface will be developed by using the cross platform Qt framework. 

The main screen a user will see is a human model along with the Log, patterns, and 
manage tactos window.  Users will be allowed to add however many tactors they need 
and also to assign an ID to the tactors within the manage tactors. Once the tactors are 
created the user has the option of right clicking anywhere on the model and selecting 
what tactor to go at that location. Once this is done a tactor object is added to the 
model along with a label indicating its ID. Our first iteration (Version 1) will have 
pre-defined location on the body to place tactors, but in the future (Version 2) we 
hope to be able to allow the user to place the tactors anywhere on the body. We also 
will have the ability to allow the user to load on the fly configurations that they have 
previously saved.  

 
 

 
 
 
 



2.3 System Block Diagram  

 
2.4 System Description  
 
2.4.1 Sensors - Obtains data from the subject and sends back to transmitter 
2.4.2 Tactors - Responds to data from transmitter (ex. tactor ) 
2.4.3 Transmitters - Sends and receives data through serial connection 
2.4.4 API - Specifies interaction of the game engine, user interface, and transmitters 
2.4.5 Serial Connection - Takes the data from the interpreter, converts the data into a 

serial format and sends it to the transmitter 
2.4.6 Interpreter - Integrates data from the game engine into the tactor configuration 

and sends it to serial connection 
2.4.7 tactor Configuration - Stores the layout of the tactors as received from the user 



interface 
2.4.8 Game Engine Communication - Receives data from the game engine and sends it 

to the interpreter 
2.4.9 Game Engine - the MIRAGE environment 
2.4.10 Output Log - A log of the events occurred and command given during the use of 

the API 

 

3) Design Requirements 
 

3.1 Functional Requirements 
Version 1 (December 2013) 

V1.1 User will be able to choose from predetermined  locations for the tactors 
on the vest/body.  

V1.2 User will be able to send commands with predefined buttons. 
V1.3 User can change the intensity of the vibration for each tactor. 
V1.4 User can test tactors currently assigned to body to ensure functionality 
 

Version 2 (May 2014) 
V2.1 User can place pagers to any appropriate location  
V2.2 User can make custom patterns with UI 
V2.3 User can make custom tactor layout and save custom tactor layout 
V2.4 User can use other tactile attire (belt, wrist) 
V2.5 Interface must be able to be “plugged” into any platform or system 

 
3.2 Non-functional Requirements  

3.2.1 Detailed documentation, every method declaration and class 
3.2.2 Quick response time to signals sent to tactors  
3.2.3 Use the fewest possible transmitters to keep price low 
3.2.4 UI is simple enough to use without any knowledge of the code 

 

 
 
3.3 Deliverables 

3.3.1 One functional Tactile Vests that are able to be configured with the tactors 
3.3.2 Each vest contains up to 8 tactors place throughout the vest/body 
3.3.3 A generic and reusable API for serial communication to the tactors. The API 

will be used within the game engine in the MIRAGE or by other developers. 



3.3.4 Intuitive UI for tactile vest configurations 
3.3.4.1Configuring tactors anywhere on body (front/back) 
3.3.4.2 Compatibility with multiple vests 

3.3.5 User can use other tactile attire (belt, wrist) 
 

4) Work Plan 

 
4.1 Team Member’s Tasks 

Garrett - User Interface with Qt 
Ryan - Qt communication with API, UI 
Jacob - API Development 
Ben - API Development  
Cyle - System Architect, API 
 

4.2 Schedule/Milestones  
Over the next several months the VRAC Tactile Vest Project will partake in several 

milestones which will demonstrate progress and potential. Each milestone has an overall goal 
and several tasks that help in achieving this goal which will be tasks in the WBS (4.3).† 

Milestones: 
10/11­ Project Plan V.1 
10/21 ­ Simultaneous Signals Tests 
10/24 ­ Design Document V.1  
11/4 ­ Skeleton API, Skeleton User Interface 
11/15 ­ Project Plan V.2 
11/18 ­ Communication between UI and API to send a signal (Functioning prototype) 
12/2 ­ Fully functioning prototype of one Tactile Vest 
12/6 ­ Final Design Document and Project Plan   
12/10 ­ Group Presentation 
1/27 ­ Fully Working API where user can run predetermined patterns 
2/10 ­ Functioning ability to create custom patterns with UI** 
3/20 ­ Open Scene Graph integration 
3/25 ­ User can use other tactile attire (belt, wrist, etc.) 
4/30 ­ Finalize API and UI 

 
† Milestones may be added or changed once 492 begins. 
**Pending on hardware restrictions. 

  
 
4.3 Work Breakdown Structure 

See Appendix A. 



 
4.4 Risks and Mitigation 

4.4.1 Risk: The transmitter prohibits us from sending multiple signals at once 
which will fire off all tactors at once 

          Mitigation: Testing early can help us determine our hardware limitation so 
we can move on to other hardware options 

4.4.2 Risk: The tactors do not provide enough vibrating power  
          Mitigation: A user study has already been conducted and although it has  

been pointed out to be a possible issue, we could look into  
modifying the tactor design so that it will vibrate at a greater  
intensity. 

 
 
 

4.5 Resources  
● Long Range Systems website 
● Long Range Systems IT consultants 
● 8 Long Range Systems service tactors(More available on request) 
● 1 Long Range Systems T74USB Interface Transmitter(More available on request) 
● MIRAGE and VRAC lab space 
● Tailor for possible vest variations 
● Clear Rubbermaid Storage Bin with White lid  

 
 
 

 
 
 
 
 
 
 
 
 
 
Definition of Terms  
 

VRAC  Virtual Reality Application Center 



MIRAGE Mixed Reality Adaptive Generalizable Environment 

API  Application programming interface 

Qt  A cross platform GUI application framework utilizing C++  

Tactor A piece of hardware to generate a tactile response. 

Serial 
Connection 

The process of sending data one bit at a time 

tactor Layout The location of tactors on the vest/body 

tactor 
Pattern 

The sequence of the tactors’ vibration/lights 

Open Scene 
Graph 

Open source library for rendering 3D models with Qt support 

 
 
 


