Final Document

VRAC Tactile Vest
lowa State University
May 14-23

Team Members

Ryan Haack
Garrett Phelps
Ben Andry
Cyle Dawson
Jacob Cramer

Client/Advisor
Dr. Stephen Gilbert

Table of Contents

Project Design

Problem Statement

Functional Requirements

Non-functional Requirements

Uses Cases

Operating Environment

Assumptions and Limitations

System Block Diagram

Block Diagram Description
Specification

Module Description

User Interface Description
Testing

Test Specification

Tests
Implementation

Basic Building Blocks

Familiarity with platforms/tools
Standards

C++11

Army Confidentiality

Universal Serial Bus (USB)
Appendix I: User Guide

VRAC TactileVest Ul Instructions

VRAC TactileVest API Instructions
Appendix II: Initial Version

Ul Design V1

Appendix Il
What We Learned

Future Plans
Definition of Terms

https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.ccj3thoae46z
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.iq4zz5cut2fq
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.6rw5oax4zn9l
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.jet53g2nfkim
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.2uizrr3a0clb
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.uifk3vwyc3zn
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.571kpje17nd6
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.r4bd2788rym6
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.1n459d46xh7g
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.8gf0vm2ub3e
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.oyscf4tvsckx
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.4pnsukdviqzr
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.mikbcxu1dkh2
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.rg6s72yeq88r
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.rbo2q08bllh3
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.x7wj6sb8wr91
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.hv4m0stov6iq
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.9149x6qn5kb5
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.1tm58ic7r7o4
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.ukqepc14vclb
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.d48reeu3xvq5
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.otuigo6hebtr
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.i22f5id88d71
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.wyxy4ttze485
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.1g84u5ji4snl
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.ktjwumau37w3
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.1de0ko13u1pb
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.2uxbwkz7yfl
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.dxipi36l5h3r
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.v4rapuaeoamt
https://docs.google.com/a/iastate.edu/document/d/s8a-yLyIHPz8Rsm5HMsACkQ/headless/print#heading=h.xzuc7ag9por7

Project Design

Problem Statement

The VRAC is currently receiving funding from the United States Army for a virtual reality
training simulator. The MIRAGE a mixed-reality research lab fitted with IR sensors and a
fully-functional game engine. Applicants can use this simulator to experience combat
simulations at a much lower cost and setup time than setting up an environment with paid
actors.

The end goal of this project is to provide an APl to communicate with physically-responsive
hardware (called tactors) that are placed in particular configurations on applicants, and a
graphical Ul that will allow users to easily configure tactor placements virtually, as well as
command the tactors (which will internally use our API). The current set-up uses a brand of
restaurant pagers attached to vests, but interest in extending use-cases was expressed
from the very beginning.

Along with the potential extra use-cases in mind, we were also instructed to leave room for
the possibility of a unique concept of “patterns” that would allow for certain formations of
tactor to be activated in a certain manner (e.g. a “star burst” pattern). The Ul developed
would also be responsible for configuring these patterns.

Finally, the APl needed to be intuitive and complete enough to be “plugged-in” as
necessary. In particular, we were told that the API would be used by the game engine to
notify applicants when they were shot. Although we were not responsible for the
calculations and determinations of which tactors to activate, we had to make sure that the
API could be used in a way that was simple in this context.

Functional Requirements
Version 1 (December 2013)
V1.1 User will be able to choose from predetermined locations for the tactors on
the vest/body
V1.2 User will be able to send commands with predefined buttons
V1.3 User can change the intensity of the vibration for each tactor
V1.4 Tactors must be configured before use

Version 2 (May 2014)
V2.1 User can place pagers to any appropriate location
V2.2 User can make custom patterns with Ul

V2.3 User can make custom tactor layout and save custom tactor layout
V2.4 User can use other tactile attire (belt, wrist)
V2.5 Interface must be able to be “plugged” into any platform or system

Non-functional Requirements

Detailed documentation, every method declaration and class
e Quick response time to signals sent to tactors

e Use the fewest possible transmitters to keep price low

e Basic soldier 3D model

Uses Cases
e User adds a specified tactor
User drags a tactor to a part of the body
User sends a signal to a tactor
User clicks on “tactor Test” to test configuration
User deletes tactor from body

Operating Environment

The primary operating environment for our program will be Linux but should be compatible
with Windows. We will create a serial connection to the tactors and write our API using
C++. The user interface will be coded using the Qt application to help us achieve our cross
compatibility goal. Our API will be the communication between the MIRAGE game engine
and the tactile vest. Our API will be fully compatible with any application in need of serial
connection to a device.

Assumptions and Limitations
Assumptions
o VRAC has set up a git repo
o tactors, transmitter, and military vest will be provided
o Simultaneous signals can be sent with better hardware
Limitations
o Vibration strength of tactors
Hardware restrictions for simultaneous signals
Operating range of tactor approximately %2 mile
Battery life of tactor approximately 48 hours
Export control regulations limit us to showing source code to only US
citizens
o Final project deadline is May 2014

o O O O

System Block Diagram

System Block Diagram

++
Sensors Tactors API (C)

A A

*’_ ; Serial

/ Connection
Transmitters

Pager
UserInterface = o configuration

Q)

—— /

Game Engine
Output Log MR AG%)

Block Diagram Description

Sensors - Obtains data from the subject and sends back to transmitter

Tactors - Responds to data from transmitter (ex. tactor)

Transmitters - Sends and receives data through serial connection

API - Specifies interaction of the game engine, user interface, and transmitters

Serial Connection - Takes the data from the game engine and pager configuration,
converts the data into a serial format and sends it to the transmitter

Pager Configuration - Stores the layout of the tactors as received from the user interface

Game Engine - the MIRAGE environment

Output Log - A log of the events occurred and command given during the use of the API

Specification

Module Description
The API will control and access the hardware attached to our tactile attire (i.e. the tactile
vest). The design will be simple, extensible, and minimal in assumptions.

On the lowest level, there are tactors and sensors. Users must be able to command tactors
and check sensors. These tactors and sensors will be attached to some unit of attire. Each
piece of hardware will be identified with a name, so when the user attempts to
communicate with the hardware, he or she can do so without having to have direct handles
to the hardware or remember complicated IDs.

On a higher level, users would much rather use a more abstract way of controlling the
hardware. In particular, users would like to define a high-level pattern that describes which
tactors need activated, potentially including a complex sequence of simpler patterns.
Internally, these patterns would know which specific hardware to control and commands to
run.

The interfaces are designed as follows:

Name: Sensor
Purpose: Read from a specific hardware sensor (i.e. temperature sensor)
Description: Sensor corresponds to a physical sensor and is responsible for retrieving
data from it when check is called. In most cases a sensor would be associated with an
Attire.
Methods:

e String:check() - Read the state of the sensor

o Return the state

Name: Tactor
Purpose: Control a specific hardware tactor (i.e. tactor)
Description: Tactor corresponds to a physical tactor, such as a tactor, and is responsible
for sending commands to that Tactor when command is called. In most cases a Tactor
would be associated with an Attire.
Methods:

e boolean:command(String:command,Hardwarelnterface:device) - Send a command

to the tactor via the Hardwarelnterface
o Return true if the command successfully executed, false if the command

failed to execute.

Name: Attire
Purpose: Model a physical unit of attire (i.e. tactile vest)
Description: Attire corresponds to physical attire, such as a vest or belt. Such physical
attire would have a number of tactors and/or sensors integrated with it. Attire will be able to
add and remove both Tactors and Sensors, execute a pattern of Tactor commands,
command a single Tactor, or check Sensors.
Methods:
e constructor(Hardwarelnterface:device) - Create an Attire with the specified
hardware interface
e Tactor:addTactor(String:name, Tactor:tactor) - Add a Tactor with a specific name
o Return the previous Tactor with that name, or void if none existed
e Tactor:removeTactor(String:name)
o Return the removed Tactor, or void if no Tactor by that name existed.
e Sensor:addSensor(String:name, Sensor:sensor) - Add a Sensor with a specific
name
o Return the previous Sensor with that name, or void if none existed
e Sensor:removeSensor(String:name)
o Return the removed Sensor, or void if no Sensor by that name existed.
e boolean:command(String:tactorName, String:command) - Send a command to a
Tactor
o Return true on command successfully executed, false if the command failed
to execute.
e String:check(String:sensorName) - Read the state of a Sensor
o Return the state
e boolean:execute(SimplePattern:pattern) - Execute a command pattern
o Return true if the SimplePattern was executed successfully, false if the
SimplePattern failed to execute.
e boolean:execute(ComplexPattern:pattern) - Execute a series of command patterns
o Return true if the ComplexPattern was executed successfully, false if the
ComplexPattern failed to fully execute.

Name: Hardwarelnterface

Purpose: Provide an interface for Attire to use to communicate with hardware (e.g. the
transmitter via Serial)

Description: Hardwarelnterface corresponds to the connection to a physical device (e.g.
transmitter) through which commands are sent to Tactors and Sensors. Hardwarelnterface

7

will be able to open and close a connection to a physical device, send data to that device,
in the form of a C string, and read from that device.
Methods:
e boolean:Open(char*:toOpen) - Open a connection to the hardware device given by
toOpen
o Return true if the connection was successfully opened, false if the connection
failed
e boolean:Close() - Close the open connection to the hardware device
o Return true if the connection was successfully closed, false if closing the
connection failed or if the connection wasn’t opened in the first place
e boolean:SendData(char*:dataToSend) - Send the data given by dataToSend to the
hardware device that is currently open
o Return true if the data was successfully sent, false if the data failed to send
e String:ReadData() - Read data from the hardware device that is currently open
o Return the data from the hardware device as a string or an empty string if the
read failed

Name: SimplePattern
Purpose: Describes a set of Tactors to be commanded simultaneously
Description: SimplePattern corresponds to a series of Tactors to be given the same
command simultaneously (or potentially in sequence as the hardware demands).
Methods:
e constructor(String:command) - Create a pattern with a specific command
e boolean:addTactor(String:tactorName) - Add the name of a Tactor to this pattern
o Return false when a Tactor with that name already exists in this pattern, false
otherwise.
e boolean:removeTactor(String:tactorName) - Remove the Tactor with the given name
from this pattern.
o Return true if the tactor was successfully removed, false otherwise.
e String:getCommand() - Get the command to run on the set of Tactors
o Return the command
e String[]:getTactors() - Get the set of Tactor names to run the command on
o Return the names of the Tactors
Name: ComplexPattern
Purpose: Describes a set of Patterns to be run asynchronously
Description: ComplexPattern describes a series of SimplePatterns to be run in
sequence. The SimplePatterns are stored according to their delay after the start of the
ComplexPattern.
Methods:

e Pattern:addPattern(int:time, SimplePattern:pattern) - Add a pattern to be run at a
certain delay
o The delay is measured from the start of the ComplexPattern execution, not
the previous pattern execution
o Return the Pattern previously set to run at this time, or void if none existed
e Pattern:removePattern(int:time,SimplePattern:pattern) - Remove a SimplePattern
from the ComplexPattern.
o Return the removed SimplePattern, or void if no pattern with that mapping
exists.
e Map<int, Pattern>:getPatterns() - Get the patterns to execute and the delays at
which to execute them
o Return a Map of Patterns keyed by delay

User Interface Description

A] TactileVestUl = = X} TactileVestU = = x| Manage Tactors

Placed Tactor 102 Add single 101
Placed Tactor 101 102
Placed Tactor 103 D: 101
Placed Tactor 104 103
Placed Tactor 105 - 108
Add 105
106
Add Multiple 107
108

101 to 108

AddRange

- H/"’

Configuration.

T Ppatterns !

103
104
102

Using the powerful Qt framework, we were able to create a cross-platform, highly-functional
“control center.” This application shows one way the TactileAPI could be used by allowing
users to create and test tactor configurations. The first version consisted of a 2D image of
a soldier, and a drag-and-drop interface. The user could add tactors to the configuration by
dragging them to predefined locations on the image. The user could also trigger just one or
all of the tactors added. See Appendix Il for a full description of the original Ul
implementation.

Although this design was functional, we recognized the limitations fairly quickly. After
speaking with the client, we determined that a more flexible implementation using a 3D
model would be more adequate. We decided on using the popular OpenSceneGraph
library, since it’'s capabilities and compatibility with the Qt framework made it ideal for our
needs. In order to make space for the central component (the 3D model), many of the other
Ul components were broken out into their own windows or dialog boxes. The result was a
more usable application, with each component having a clear distinction and purpose from
the next.

Configuration View

The primary focus of the application is the component we
call the “Configuration View.” Using this, users can add
tactors to the Model by right-clicking anywhere, opening the
Tactors menu, and selecting a tactor from the list. This list is
based on tactors added to the tactor manager (described
next), excluding tactors already added to the Model.

Right-clicking on a placed tactor brings up a menu

describing things you can do with that tactor. Although limited in the current version, many
more actions can be added. Each tactor on the Model has an identifying label,
corresponding to the identifier given to the tactor when added to the tactor manager. Using
these identifiers, users can easily see which tactors they are interacting with.

Tactor Manager

(X Manage Tactors ?

Add Single 101 The “Tactor Manager” allows users to define what tactors are
o: (1 et available for the configuration. Tactors can be added or

= :gg removed as desired, with the option to add a range of tactors

106 at once. This feature is particularly useful for trying out brand

admtpe i new configurations. Tactors already placed on the Model are

01 | |18 bolded, so they are easily distinguishable. Configurations can

Add Range also be loaded on the fly with the drop-down at the bottom of

e the window.

Configuration.. hd

10

Pattern Manager
Patterns are a concept that allows the user to define a set of

2
) tactors to command as a unit. The “Pattern Manager” provides

5] Patterns

103 an intuitive way to use this feature. Due to hardware limitations,
104 the TactileAPI can only control one of the tactors available at a
102 time, so using this feature will activate tactors sequentially.
However, the TactileAPl does not contain this limitation, thus
allowing the Pattern Manager to become more powerful as
better hardware options are explored. More information about
handling these hardware limitations is provided in Appendix IlI.
Execute Delete
Action Log
i TactleVestyl - O As the user works through this tool, certain actions are
Placed Tactor 102 documented. This “Action Log” provides a view for the user to
Eigig E;i see what actions are being documented. Not only does this
Placed Tactor 105 provide an accurate history of what the user has done, but this

also allows the user to see actions performed by the software,
as well as extra information about the actions taken. This
feedback can help the user understand what goes on under the

hood as the configuration takes shape.

Save/Open Configuration

Having to redo every configuration every time would be a frustrating task, so another
important feature to note is the ability to load and save configurations. Using this feature,
the state of all of the tools is saved in a standard XML format. The portability of this format
allows configurations to be saved on one computer and opened on another, even if it's on a
different operating system. This keeps the application cross-platform, which was one of the
major goals from the very beginning, as discussed in the “Operating Environment” section
of this document.

Testing

Test Specification
The following will be tested and verifies the correctness of the application

e Verify that a user can add tactors and then move them onto the body

e \Verify a user can signal the desired tactor
e Verify that two tactors buzz at the same time when simultaneous signals are sent

1

Verify a user is able to create a pattern of tactors to be signaled
Verify that a user is able to save patterns for future sessions

Verify that a user is able to move/remove tactors from the body
Verify the output file matches the commands used during the session

Verify that user outside of our team can complete all previous stated test cases

Tests

Stress Tests
When the project was started we started right off with stress testing the hardware of our
paging system. We needed to ensure that our hardware was sufficient enough to complete
this project.
To test this we attempted the follow:
1) Rapidly sending signals off to a single pager
2) Sending signals to multiple pagers simultaneously
3) Sending signals to multiple pagers sequentially in increasing intervals of 1,2,
and 3 seconds
Results:
1) There is handshaking involved with the pager and the transmitter resulting in
the pager ignoring all proceeding requests until it was finished with its first.
2) This was similar to the first result except that the transmitter was waiting for
the reply from the previous pager before it attempted the next pager
sometimes resulting in erroneous results.
3) Same of result 2 except with 1 second intervals the signals were being
received correctly.

What this means is the hardware is not essentially not able to fully accommodate this
project. We reached out to the LRS company in attempt to remedy this problem, but in the
end we were instructed by our advisor/client to continue on with the current hardware, but
adapt the APl to accommodate similar transmitter and pager systems.

User Acceptance Tests

The client instructed us that we must be able to hand out our API with some minimal
instructions to people involved at VRAC and have them send off basic commands to the
pagers. In order to complete this we created some step-by-step user’s manual to write
some APl commands to signal the pagers. We will then give these instructions to someone
for testing.

12

Implementation

Basic Building Blocks
e C++ - Overall Header file for the API with a wrapper for both Linux and

Windows libraries
e Qt Creator for the Ul

Familiarity with platforms/tools
Languages
e C++ - The whole group is familiar with C code and object oriented
programming. The project will be written in C++ and the majority of the group
feels comfortable with the language.
Tools
e Qt Creator - We will be using Qt Creator to create the user interface for our
project. None of us have used Qt Creator and Garrett and Ryan will focus on
learning and using this new technology.
e Git - We are all familiar with and will use a Git repository for version control.
e Redmine - Our project has also been set up with a Redmine account where
we will keep track of issues and current tasks regarding our project.
e OpenSceneGraph - This will allow us to show the user a 3D representation
of a model.
Platforms
e Windows/Linux/Mac - We are all comfortable with windows but some of us
are not familiar with linux or mac.This project will be cross platform but is
intended to run on Linux. We will run and test our program on both a windows
environment and a linux/mac environment. We learned from our initial testing
that serial connection libraries are platform specific. We will have to use two
separate libraries and at the same time make sure they don'’t interfere with
each other.

Standards
C++11

C++11 extends the C++ standard library includes the core language of C++. This standard
was important for our project because of the multithreading support.

Army Confidentiality
This project has received funding from the United States Army therefore there were privacy
agreements we had to follow. Every member of our team had to be a legal United States

13

citizen and we must not show any of our source code to any non United States citizens. We
have made sure to not post any of our code in any public domains.

Universal Serial Bus (USB)

USB is a hardware communication standard for many types of electronics. In our case, the
T74USB transmitter used for serial communication to the pagers. USB is common port on
most computers so the transmitter may be used with most computers with the correct driver
installed.

14

Appendix I: User Guide
VRAC TactileVest Ul Instructions

Main window

Toolbar for
saving loading,
and shwoing
different views

Right-click to
choose from
Tactors currentlhy tactors to
on the model assign

Shows the current model loaded and all tactors attached to the model.

15

Manage Tactor Window

Tactors not
assigned to model

Add a single tactor

Tactors assigned to
with specified ID

model

Add the tacors
between the given
ranges

Load a
configuration

Used to create tactors to add to the model and also manage them. Has an option to load
predefined configurations.

16

Patterns Window
Stores the patterns to execute in sequential order.

Tactor IDs to
signal in
sequential order

Send the signals
to tactors in the
list

Delete selected
tacor from list

17

Log window
Stores all actions completed in the current session.

Placed Tactor 101
Placed Tactor 102
Placed Tactor 103
Removing Tactor

Sent Signal to 102
Sent Signal to 103

Sent Signal to 102
Sent Signal to 103

18

VRAC TactileVest API Instructions

Hardware Setup
e Go to pager.net/support/ and download the T74USB driver
e Plug the T74USB transmitter into a USB port on your computer

e Note the associated COM port with Device Manager
‘ e T B

File Action View Help

= DE HZ & NS

> ey DVD/CD-ROM drives -
> a"ﬁ Human Interface Devices

> g IDE ATA/ATAPI controllers

b % Imaging devices

» 22 Keyboards

- B Mice and other pointing devices
>-‘__-L Manitors

> ¥ Network adapters

.75 Ports (COM & LPT)

¢ LJ'E Ti4sx Transmitter (COM3)
>-n Processors '

m

T74USB s>

FCC 10: M74T7400 »-%| Sound, video and game controllers

» /M System devices
- a Universal Serial Bus controllers

Software Setup
e Include the header file TactileAPI.h
e Make sure to compile with C++11 (set flags -std=c++0x or -std=c++11)

Pager Notes
o The ID of the pager is located on the upper right corner of the pager.

Rt

e This ID may not be correct if someone has previously reprogrammed the pager to
another ID.

e The pagers we currently have cannot be signalled one after another very well. There
is a period of time after a page is sent that you must wait for the pager and
transmitter to perform their “handshake”. We believe the transmitter is waiting for
some kind of reply signal from the pager.

e \We recommend waiting at least 1 second before paging another pager.

19

Example Code to Page a Pager
Option1 is the most basic way to page one pager, while Option2 contains the concept of
an attire object that is able to contain multiple pagers.

Option 1:
//Create a Serial object
Serial serialObij;

//Open the Serial object with the correct COM port parameter
serialObj.Open (“COM1”) ;

//Create a pager object and give it the ID of the pager you want to page
Pager pagerObj (“101”);

//Call the command function on the pager with the vibration intensity and
passing it a reference to the serial object. //Vibration intensity ranges from
1 to 4 (4 = highest)

pagerObj.command (“3”, &serialObj);

//Close the serial object
serialObj.Close();

Option 2:
//Create a Serial object
Serial serialObj;

//0Open the Serial object with the correct COM port parameter
serialObj.Open (“COM1”) ;

//Create an Attire object and give it a reference to the Serial object
Attire attireObj (&serialObij) ;

//Create a pager object and give it the ID of the pager you want to page
Pager pagerObj (“101”);

//Call the addTactor function. Pass in a name and the pager object
attireObj.addTactor (YpagerName”, &pagerObj);

//Call the command function on the attire object. Pass in the name of the
pager to pager and vibration intensity
//Vibration intensity ranges from 1 to 4 (4 = highest)

attireObj.command (“pagerName”, “37);

//Close the serial object
serialObj.Close();

20

Appendix lI: Initial Version
Ul Design V1

File

Add Pager

Pager ID: 107 =

Add Pager

Pager Setup

Intensity: VeryStrong *

Test Pagers

Log

Added Pager: 102
Added Pager: 103
Added Pager: 104
Added Pager: 105
Added Pager: 106
Signal Sent: 105

The initial Ul design was a simple interface that allowed the user to simply drag and drop
pagers that they have manually added. The pagers could then be signaled by double
clicking on them within the respective spots on the human model. The pagers would also
change colors and display where they are on the body when hovering over them with a
cursor.

Client’s Specifications

The specifications from the client depended on having the pagers be placed anywhere on
the human model and also be able to create custom patterns to signal the pagers on the
body. It was also specified to be able to change out the models and have the user create,
for instance, a belt of pagers that could then be signaled.

Possible Ul solutions

To solve the design specifications required by the client we attempted to create a movable
list box to contain these pagers and also allow the user to add more list boxes to be placed
on the body. This in theory would solve the specification of allowing pagers to be placed

21

anywhere, but would create a drastic problem with space on the model becoming very
limited as each spot would contain a list box. It was also very complicated to switch out 2D
models and have these list boxes be saved across sessions.

Our final solution was to switch the whole Ul to a 3D perspective with a human model that
would allow the user to rotate and place pagers with a click of the mouse. The design we
strived for was a very modular approach with optional windows around a main scene of the
human analog. This would allow the user more freedom and overall a much cleaner look as
compared to our V1 design.

22

Appendix lll
What We Learned

More often than not, developers come out of a project wishing they knew at the beginning
what they knew at the end. This statement holds true for us. This project had many powerful
technologies involved, required specific skill sets, and had to remain abstract enough to
remain usable across different environments, with both software and hardware being
variable. Facing these challenges, our team learned some valuable lessons.

One lesson learned was if you are using technologies you haven't used before, it's worth
the time and effort to play with them outside the scope of the project. Learning to deal with
them in smaller, more targeted playgrounds helps learn the quirks of that particular
technology so debugging in the grand scheme becomes simpler. This is especially true if
you're mixing many different technologies (Qt, OSG, C++11, CMake, etc.), like we did.

Another lesson learned was to test the software on all the systems it is being developed for
from the beginning. When issues do arise and a solution cannot be found within a team, it
is wise to reach out to others that may have more experience with the technologies being
used.

Also knowing each member's strengths and weakness so you know who you can ask for
support. That also makes delegation of tasks easier, and make the project move along a
little faster.

Future Plans
Plans for future features of the project have been discussed with our client and team.

The first major plan is to have better tactors and/or transmitter that allows for multiple
signals to be sent simultaneously. Since this is a future plan that has been discussed
multiple times at team meetings, we have set up our API in an abstract manner that it will
allow for new equipment to easily be added and set up.

Another major future plan discussed is to add other tactors and sensors. For example, one
of the sensors could be a heart rate monitor. Another tactor discussed was a heat based
tactor that would add a heated signal to the tactile vest or apparel. Like the first future plan,
our APl is set up to abstract enough to add different types of tactors and sensors.

23

For the Ul, a feature that has been planned is to add the ability to specify what Ul events
are logged and displayed in the side log. Another feature for the Ul that has been planned
to be added is the option to dynamically add and switch models, each with their own pager
configuration.

Definition of Terms

VRAC Virtual Reality Application Center

MIRAGE Mixed Reality Adaptive Generalizable Environment

API Application programming interface

Qt A cross platform GUI application framework utilizing C++
Tactor A piece of hardware to generate a tactile response.

Sensor Obtains data from the subject and sends back to transmitter
Serial The process of sending data one bit at a time

Connection

Tactor Layout | The location of tactors on the vest/body

Tactor The sequence of the tactors’ vibration/lights
Pattern

OpenSceneG | Open source library for rendering 3D models with Qt support
raph (OSG)

Team Information

Name Major Contact

Ryan Haack Computer Engineer rahaack@iastate.edu
Garrett Phelps Software Engineer gdphelps@iastate.edu
Ben Andry Software Engineer bfandry@iastate.edu
Jacob Cramer Software Engineer jmcramer@iastate.edu
Cyle Dawson Software Engineer cjdawson@iastate.edu

24

