Team: May 14-22 April 29th, 2014

OmniView

Senior Design Final Report

Team May 14-22

Authors: Charles Patterson

Nick Schulze, Derek Petersen, Chris Tedford
10f 18

Team: May 14-22 April 29th, 2014

Table of Contents:

Introduction

Project Design
Overview

Block Diagram
Google Glass Application Module
Web Server Module
MIRAGE Module
Implementation of Project
Google Glass Application Module
Web Server Module
MIRAGE Module
Testing Process
Google Glass Application Module
Web Server Module
MIRAGE Module
Conclusion
Appendix [: Operation Manual
Overview
Setup Google Glass Application Module
Using Google Glass Application
Setup Web Server Module
Setup MIRAGE Module
Notes
Appendix II: Prototypes
Audio Transfer App
Google Play Services Map
Appendix III: Other Considerations
World View Map

20f18

https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.8xc2c5u4j6xl
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.g3xxrlz54esj
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.59ltm5167yn1
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.9e40ilter0rq
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.m1xwrs5zrpkc
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.g7d4dplk9wnl
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.pmt6sxh0lagm
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.e0chamzb9knr
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.r9co7f5mjc0z
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.h2oidicffwku
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.cnkbuawxuml0
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.k0zfg3j7duq9
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.qrfs4oaza6h7
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.57xl1ibxrgcj
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.fu9e98xo15k0
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.wznf784b02i7
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.b5acibu5s072
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.lkrsav78zbk2
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.38lq1pjxnxbc
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.4snbay4z7xf
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.c6d0tonf48y8
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.mqdkkvyu73fx
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.hznunkzf4vkq
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.kcbcr42zcxp2
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.vidtyn2gcgun
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.g5c67nhq43u6
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.u8lo1zo03x0e
https://docs.google.com/a/iastate.edu/document/d/sKswL5VYkrLeQqciJ53y2Kw/headless/print#heading=h.jyuavt9kxakd

Team: May 14-22 April 29th, 2014

I. Introduction

For our senior design project, we were given a Google Glass and access to the MIRAGE
tracking system. We were tasked with building an application for the Google Glass that acts as a
heads up display and works in conjunction with the MIRAGE tracking system to track and display
other users.

Throughout the course of development, secondary goals began to take shape. These included:
developing an API so that other devices could use our tracking and display system; extending the
tracking outside the doors of the mirage; allowing the user to upload custom maps to the
application; fostering communication from one device to another; getting the system working
from multiple devices; and the implementation of an overarching ‘command center’ website.

Our main focus throughout the course of the year was the Google Glass. We ended up creating
an application that would interface with the MIRAGE tracking system to generate a map of the
environment that displayed other users also in the MIRAGE. Additionally, we were able to use the
Google Glass’s voice-to-text capabilities to send audio to the main server and other users on the
system. When the MIRAGE tracking system wasn’t available, we were able to configure the
Glass application so that it fell back to using its GPS capabilities.

To store the data being generated by the Glass, we set up a web application online that was
backed by a database that could store the data. We were then able to write both POST and GET
endpoints for the Glass application to use so that it could both retrieve other users’ locations and
send its current location. Having all the data available was incredibly conducive to a sort of
‘command center’ application, so we ended up extending our REST API into a full fledged
website that could act as the brains of the operation.

Realizing we could extend these services and because of the necessity to test our mapping
application, we decided to create applications for both Android and iPhone. The Android
application ended up being a very close mirror of the Glass application as they are written in the
same language. The iPhone application ended up having some different functionality, but the
core Glass functionality of tracking, displaying, and communicating remained the same.

In order to accomplish everything we made use of many different resources. We used the
MIRAGE system and its various software libraries to process the data packets. For the MIRAGe
web application we used a php web framework to set up a backend that could be more granular
than GPS. For the World View Web Application we used the Play web framework. Throughout
the development of both web applications we made heavy use of Google’s Maps API’s as well as
general javascript libraries. Both the Glass and Android applications were written in Java using
Android Development Tools. The iPhone application was written in Objective-C.

30of18

Team: May 14-22 April 29th, 2014

II. Project Design

Overview

Omniview was designed with modularization and scalability in mind. To make our product work
across many platforms and with a variety of programming languages we built the backbone of
the project on a web framework. The web framework allows us to scale our project to be used
with multiple Google Glass devices, Android devices, and iPhone devices. It also gives us a
variety of access methods to our data, we are able to connect to the program through a Wi-Fi
connection or through a mobile data connection. This means not every device has to be on the
same network to work with our program.

One web server does the majority of the computing for the project. GPS and message data is
collected in a variety of ways from the different sources, but it is all sent to our web server to be
processed in the same way. This gives us uniform data that is easily accessible to each device
after being processed. It also takes the computing load off of our devices.

There are currently two ways in which GPS data can be provided to the web server. The GPS
data can either come from the connected devices built in GPS sensor or it can come from the
MIRAGE tracking system. The MIRAGE tracking system gives us precise indoor location data
while the built in sensors give us accurate outdoor location data. Combined, OmniView can be
used in a multitude of places.

4 of 18

Team: May 14-22 April 29th, 2014

Block Diagram

The modularization of OmniView gives us some distinct advantages when it comes to
troubleshooting and testing as well as expansion and change. OmniView consists of three
majors modules with small scripts connecting each module together. The three modules are a
web server, a mobile application (Google Glass, Android, iPhone), and a MIRAGE tracking
module. Each module sends data to the other modules through HTML request methods. These
HTML requests methods let the mobile applications post their GPS data to the server and let the
MIRAGE tracking module post it's data to the server. The mobile applications also retrieve
messages from the server and send messages to the server through HTML requests.

POST Location

Web Server < - ——— Android Application
™ POST Message i

fF—— N

v

*_ GET Message A

Client.Html

POST Location

AJAX Google

— Map e

Generated by
Server

Mirage Tracking Application

50f 18

Team: May 14-22 April 29th, 2014

Google Glass Application Module

The Google Glass application handles standard user interactions with the system on a
non-administrative level. The application shows an Android WebView that renders the client web
module. The web module shows a simple Google Map with all active users’ locations
represented by different map pins. This allows the user to view his/her location along with the
other users currently using the system. The app also handles displaying new text messages
from the server. The client also allows the user to create and upload new text messages

utilizing google glass’s voice-to-text conversion. The Glass module gathers its GPS location
providers and polls all of them to get the most accurate coordinates possible before updating the
server with its location data.

@ 100 L#f Al EE 6:41 pm

Commander: Keep going!
= . [
a 9}) | 1“1@ ' Hybrid | Glass Compatiable

. Wil _ |
1102 Tr_{ﬁﬂ ‘IT;G’IV]—:132—I:r

]

1212
Advisors

ITT ™

! v
“ J | !
» 1331 ! g
’ 0agqq
1012 ‘
Google 5 L M ‘V]
M S5 S o4l Map data ©2014 Google | Terms of Use

Click to rec and send message

Commander: Keep going!

Tap to rec and send message

Team: May 14-22

Web Server Module

April 29th, 2014

The web server serves three main functionalities. It runs a Javascript module that builds a map
using the Google Maps service. The map includes custom ground overlays, user markers, and
user information. It renders two maps, a server view and a client view. The second major
functionality is to provide communication from the server to the clients and vice versa. It also
receives data communication from the MIRAGE and mobile applications. Finally, the web server
stores all of the data and information for OmniView in a MySQL database.

The web server acts as the command center for the OmniView application. A “commander” has
the control to add new custom drawn maps to the OmniView for all clients to see. The
commander can also send messages to users.

L

Hybrid | Glass Compatizblz

]

1131
. a

ik o

1 1115 [1197[142 1123

— my's
o PR T I
:3311\250-5 1219

A NN,

Map data 82014 Google Imagery 82014, Kucera Intl/Story G

Repart & map eror

Connected Users:

L DEI'EI{,
2) Chris
3) Nick

4) Charles

Session Chat:

Commander: Stay safe.
Derek: Be on high alert!

Commander: Nick and Derek
'work together while moving
through the hall

Chris: Copy that sir.

Commander: Watch your left
Chris

Charles: Moving in sir.

Commander: Meet at the marked
location.

Add Custom Map

Map Image: | Choose File | Map Applicat... Example.png
North-East Corner Latitude Coordinate: -92.32424 North-East Corner Longitude Coordinate: -92 32424
South-West Corner Latitude Coordinate: -92 32424 South-West Corner Longitude Coordinate: -92 32424

| Add Map |

| Clear Inactive Users
From Map

Keep going!

Clear Session Chat

Send message to users

Click Coordinate Info: Latitude= 42.028742000560085 Longitude= -93.65087714510002

7 of 18

Team: May 14-22 April 29th, 2014

The “commander” or user of the web server can add custom markers to the map to notify users
of an objective location, caution areas, or blocked off locations. The server has two modes it

can run in, a full world map view and a MIRAGE map view. The MIRAGE map view takes
advantage of the precise indoor MIRAGE GPS locations, but is limited to a single map area of 40’
by 40°’. This module is used for Army training missions in a closed environment.

session Clhat: Connected Users:

Google

— Marker Style to add o map:

MIRAGE Module

The MIRAGE module is a program that takes data from the tracking system, converts it to our
data format, and then sends it to the server application.

It works by integrating with MetaTracker. MetaTracker receives coordinates of objects within the
room in a cartesian x,y,z format in units of feet. In order to integrate with our system, we convert
those units to GPS coordinates based on a simple mathematical formula. Once those units are
in GPS coordinates, we use libcurl to assemble and send a POST request to the server.

8 of 18

Team: May 14-22 April 29th, 2014

III. Implementation of Project

Google Glass Application Module

The Glass Application Module is implemented as an Android Java project. The Android layout is
simply a WebView component filling the entire screen. The WebView points to the URL of the
web client module. Calls to the web client module are simply made as Javascript calls directly
to the WebView.

Text messages located on the server, meant for the Glass Application module are read from the
server and presented to the user using the Google Android Toast library. This displays the
message in a pleasant message box at the top of the screen for five seconds. The messages
are pulled from the server by making an HTTP POST request to the Web Server Module.

The Glass Application Module is required to provide location updates from its GPS device and
submit them into the server. When the app submits its coordinate data, it's also required to
include a user ID based on the user's name (entered in via voice recognition at the initialization of
the app) and the device’s model number. Google Glass, along with other Android devices, allow
the GPS device to be extended by other attached GPS devices. The implementation is designed
to take advantage of this by polling all attached devices for location data and determining the best
possible update before sending it to the server.

Web Server Module

The web server uses the Google Maps JavaScript API v3 to render the map. PHP scripts read
user’s location data and messages from the MySQL database, send them to XML files, and then
an AJAX function on the web server adds them to the Google Map. This AJAX function polls the
XML files every 500ms to check for updates on user locations and messages and then updates
the object on the map without needing to refresh the page.

vomarkers>

<marker lat="42.02862" I1ng="-93.65137 html="GFlass Id: 3aweStd" label="Chris="/>
<marker lat="42.02836" 1lng="-93.65138" html="Glass Id: Zwvad4fv" label="Derek"/>
<marker lat="42.02862" Ing="-93.65057" html="Glas=s Id: 3aweStd" label="Charles"/>
<marker lat="42.02824" 1lng="-93.65098" html="Glass Id: Zwvad4fv" label="Sasha"/>

< /markers>

The web server communicates with both the MIRAGE and the Google Glass application through
the HTTP request methods POST and GET. The HTTP request methods are handled by PHP
scripts running on the server. The Google Glass application and MIRAGE both send updated
GPS data to the PHP script hosted on the web server. If the data is from a new source the PHP

90f 18

Team: May 14-22 April 29th, 2014

script updates a the MySQL database table, location, with a new entry, if it has already received
data from that source it will instead update the MySQL database entry. Messages from the
Google Glass application also work in a similar fashion, a new message will be received by a
PHP script on the server which will then send it to the Messages table in the database.

MIRAGE Module

The MIRAGE module is a c++ program using code from the existing metatracker software in the
MIRAGE. The program isn’t limited to any platform and just needs to be run on a computer that is
connected to lowa State’s network.

It also communicates with the server application by using POST requests. This is done using

libcurl to assemble and send the requests. It creates and sends a request every time it is notified
of an object existing in the tracked area.

IV. Testing Process

Google Glass Application Module

Goal / Requirement Test Results

Messages are displayed to the | Hand-time from the amount| Average time: ~700ms
App user within 1000ms after of time between sending
being posted to the server. the message to the server
and receiving the message
on the glass client.

Location data is updated on the | Hand-time the amount of | Average time: ~300ms
glass view within 600ms of time between sending the
appearing on the server. message to the server and
receiving the message on
the glass client.

Web Server Module

Goal / Requirement Test Results

Each user’s location updates Record the average time it| Average time: 520 ms.
within 500ms after they have takes for a users location

moved. to refresh.

10 of 18

Team: May 14-22

April 29th, 2014

Project works with up to 10
users simultaneously

How many users can be
on the system at one time
without causing delays

Project can handle at least 12 if not
more simultaneous users.

New messages enter the
system within 500ms after they
have been sent to the system.

Record the average time a
it takes a message to be
displayed on the system
after being sent.

Average time: 649 ms.

Messages are sent to users
within 500ms after they are
entered into the server.

Record the average time a
it takes a message to be
displayed on the system
after being sent.

Average time: 531 ms.

Web server is protected from
cross site scripting attacks.

Test each input section
against an array of popular
XSS attacks and record
the results.

Passed 15 tests.

4 tests caused errors in webpage, but
were fixed by clearing session chat.
Not a threat.

Web server is protected from
SQL injection attacks.

Test each input section for
SQL injection attacks and
verify integrity of the data
in the MySQL database.

Passed 10 tests at input locations. No
SQL injection attacks made it to the
database or through the system.

MIRAGE Module

Goal / Requirement

Test

Results

Data is retrieved from the
MIRAGE

Verify we were able to track
helmets in the room and
manipulate data in our
team’s code

Location data is accurate, but
sometimes difficult outside of
the center of the room

Data is transmitted to the Server
Application

Verify that we can make
post requests in a
reasonable amount of time

We can make about 10 post
requests per second

11 0of 18

Team: May 14-22 April 29th, 2014

V. Conclusion

OmniView is a great example of the potential that Google Glass and wearable technology have. It
is a unique application that showcases a practical example of how it may be used in training
simulations. Users new to the application will be able to understand it quickly because of the
concept’s prevailing appearance in modern video games.

Making a portable web-based infrastructure immediately made our project extendable to any
client that was web enabled. We were able to view maps on phones, tablets, and computers in
addition to Glass. The end product is therefore useful even to users that do not have the
expensive Glass hardware.

We were able to witness limitations of the device in its current form. It's battery life is inadequate
for this application of the screen is to be on for a long period of time or if video is being recorded
constantly. The device also lacks libraries available to other android devices; this limitation in
particular slowed our development and planning process. With these limitations in mind it was
still exciting to see the project come together and work in the end.

Appendix I: Operation Manual

Overview

OmniView is easy to operate. Each module needs to be turned on or active and then they are
set up to automatically sync together. Follow the instructions below to set up the three modules
and then watch as they connect and data begins to flow through the system.

Setup Google Glass Application Module

First of all, if you’re using Glass and not another Android device, you’ll need to make sure that the
Google Glass Launcher is installed on the device. Then all you need to do is install the android
app to the device. The .apk will be located somewhere on the VRAC’s server. Once the app
starts up, any setup will be handled by the app itself.

Google Glass Launcher: https://github.com/justindriggers/Glass-Launcher

Using Google Glass Application

12 of 18

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjustindriggers%2FGlass-Launcher&sa=D&sntz=1&usg=AFQjCNHzd_PkgliFz07twz73M1a8sOxTUg

Team: May 14-22 April 29th, 2014

The application features a set of gesture commands through the touchpad located on the right
side (when wearing) of the glass. The implemented commands and their functionality are listed
below.

Single Tap: Center map on yourself

Long Tap: Record and send message to server

Swipe up/down: Scroll to other users and center on them
Swipe forward/backward: Zoom in / out

Setup Web Server Module

The web server is hosted on Dr. Gilbert’s public lowa State web server. It can be accessed at
the following URL: http://public.vrac.iastate.edu/~gilbert/mirageglass/

There are two pages that run the control center and display the server map for the program.
One page is for use inside the MIRAGE system and the other is for use with GPS data from the
devices outside of the MIRAGE system. The two server pages look distinctly different and
clearly serve different purposes. Pick the page to use for your setup and follow the specific
instructions for that page as seen below.

MIRAGE server
Link: http://public.vrac.iastate.edu/~gilbert/mirageglass/mirageserver.html

To change the Mirage Room image... The page uses a single ground overlay rendered from
the image named mirageRoom1.png located on the server. To change the ground overlay
delete the mirageRoom1.png file from the server and upload a new image named
mirageRoom1.png. The program will automatically resize the image to fit within the calibrated
MIRAGE environment.

To add markers to the map... Select the marker style you want to add and double click
anywhere on the map. It will take around 500ms for the marker to propagate on the map as it
needs time to be added to the database. Note: Only one green goal marker can be set up in the
environment at a time to avoid confusion.

To clear the current session chat or any markers / users... Click the clear markers/ session
chat button. This will clear the objects from the database. If the MIRAGE system is running
users will reappear on the map in less than 500ms but the markers will be cleared.

Real world server
Link: http://public.vrac.iastate.edu/~gilbert/mirageglass/server.html

To add new ground overlay...Use the add custom map area at the bottom of the page. Select
a map image from your file system and enter the GPS coordinates for the NE and SW corners.

13 of 18

http://www.google.com/url?q=http%3A%2F%2Fpublic.vrac.iastate.edu%2F~gilbert%2Fmirageglass%2F&sa=D&sntz=1&usg=AFQjCNFABWbaCHJWFpbUmwIj_YxsjpZmYA
http://www.google.com/url?q=http%3A%2F%2Fpublic.vrac.iastate.edu%2F~gilbert%2Fmirageglass%2Fmirageserver.html&sa=D&sntz=1&usg=AFQjCNEz86hQNyy2IQ2UAaLRMIw7Ff8R_g
http://www.google.com/url?q=http%3A%2F%2Fpublic.vrac.iastate.edu%2F~gilbert%2Fmirageglass%2Fserver.html&sa=D&sntz=1&usg=AFQjCNEZ66cTDqtSz2xnjJ9Sqpj1Xwy_kg

Team: May 14-22 April 29th, 2014

These corners will be the edges of your map. If you double click anywhere on the map the
coordinates of that location will be displayed below this interface. If there is an issue with the
way the map looks you can go into the database and edit the map coordinates. Please refer to
the notes below for accessing the system database.

To change the map type... There are three map type options; satellite, street, and glass
compatible. You can select any of these by clicking on the words located at the upper right hand
corner of the map.

To clear the current session chat or any markers / users... Click the clear markers/ session
chat button. This will clear the objects from the database. If the MIRAGE system is running

users will reappear on the map in less than 500ms but the markers will be cleared.

To add a goal marker to map... Double click anywhere on the map.

MIRAGE Module

Setting up:

In order to work, the Motion Analysis software must be running, as well as the cortex repeater.
The match maker software must also be active. Once the environment is set up, our program
can be run.

Our module:

Our module is called “GlassClient” in the copy of metatracker that we have. It can be compiled
with the command:

make -f Makefile.glass

The syntax for running the client program is:

./GlassClient [delayTime]

where delayTime is an optional sleep added in seconds. The sleep value can be used to slow
the update frequency. The program will run in a terminal window until it is stopped with ctrl + C.

Notes

How to access web server files

1) Open an FTP connector system (FileZilla, WinSCP)

14 of 18

Team: May 14-22 April 29th, 2014

2) Ftp to : ftp.vrac.iastate.edu, port 22

3) Sign in with VRAC credentials.

4) Browse to the following directory: home/users/gilbert/public_html
How to access the database

1) Go the the following PHPmyAdmin URL:
https://p3nimysgladm002.secureserver.net/qrid50/6689/index.php

2) Login with the following credentials

Username: location
Password:

Appendix II: Prototypes

Audio Transfer App

The Audio Transfer Application was our earliest prototype. It was a proof-of-concept prototype
that proved out the ability to transfer large amounts of data between a server and a client in the
form of audio files. The program was very simplistic and successfully proved that large amounts
of data could be transferred between the server and client relatively quickly.

Google Play Services Map

The Android system has it's own Google Maps API currently in the second version. This API
uses the Google Play Services to render the map locally on the device. Our initial idea was to
use the Android Google Maps API on each device to build concurrent maps with every users
data. The Google Maps API allowed us to render beautiful fully functional maps on our Android
devices, but when we tried to run our application on the Google Glass device we found out that
due to the early stages of the Glass development Google Play Services, the service that
rendered the map, was not yet available on the Google Glass system.

15 0f 18

https://www.google.com/url?q=https%3A%2F%2Fp3nlmysqladm002.secureserver.net%2Fgrid50%2F6689%2Findex.php&sa=D&sntz=1&usg=AFQjCNEl0kHLIeaOaj6r_bxLM3HWKIFm3Q

Team: May 14-22 April 29th, 2014

We opened a service ticket with Google to get the issue fixed. Eventually Google responded to
our ticket and informed us they were working on the issue, but by % of the way through the year
the issue was still not addressed and we were running out of time.

At that point we decided we needed a new way to render the map that would still give us live
updates and be fully functional. Our alternative was to render the map on a web server and then
display the map on the Google Glass application. Thanks to Google’s wonderful WebView API
we were able to display the map on the Google Glass application but also run the JavaScript to
make full use of the features of Google Maps.

Appendix III: Other Considerations

World View Map

Introduction

The World View Map was born when two of the developers built web applications over the
weekend. The team liked both of them and decided to leverage them in different ways. The
World View web application is built to have both messages and photos posted to it as well as
locations. It is different and cool, but we didn’t think it was necessary for Glass application to
have these capabilities.

System Design
The World View web app makes heavy use of three API calls. These are:

/trackUser {"owner": “*, "latitude": ™", "longitude": "'}
/newMessage {“receiver": “*, "content": "}
/postPhoto {"owner™:™, "latitude": ", "longitude": ", "image": “'}

After an API call is made, the web app adds the info to a database and returns the relevant
information in the response. To generate the web page visuals, the web app makes heavy use of
javascript and jquery and does this so that it can update the web page dynamically.

Visuals

16 of 18

Team: May 14-22 April 29th, 2014

User 21345
User 9283766938

Woert User 5767841912

! Jowa Falls Cedar Falls : User 1001
ELRIZED Webster City 1 s

Send A Message User 5309274859

' |
4
= g S - f.g AR |

receiver id

| send Message |

T, Pella
ndianola e |
ncyvee Oskaloosa

=)

@

Creston's, o
i Ottumwa Fai

B ®) w‘m_‘ |

ok
Map data ©2014 Google - Temsof Use Reportamap emor

iPhone Application

Introduction
Born out of the need for more devices using our APIs, we created an iPhone application that
could receive messages, post photos, as well as track locations.

System Design

The iPhone application makes heavy use of the API calls mentioned above. It uses the native
map system to plot the coordinates and a little bit of image processing in order to scale the
images correctly. It makes continuous calls to continually track it's location as well as other
users’ locations.

Visuals

17 of 18

Team: May 14-22 April 29th, 2014

18 of 18

