Android VirtuTrace Remote (VT Remote)

Design Document 2

Group May14-21

Kollin Burns
Tanner Borglum
Sheil Patel
Alexander Maxwell

Lukas Herrmann



Project Overview

The project that our team has undertaken is to create an Android application for the virtual reality
simulator inside of Howe Hall on the lowa State University campus. The simulator is known as the
C6, and the application that compiles and builds the virtual environments and simulations, which are
known as scenes, within the C6 is called VirtuTrace. The app that we are designing and
implementing will interact with VirtuTrace to allow the user to control various environmental aspects
of the a given scene that is running.

For example, the scene might have various objects in the scene, let's say an apple, and our app will
allow the user to control properties of the apple, such as color, size, and placement in the scene
amongst others. The app will also allow the user to debug the scene and watch objects in the scene
to see how they change over time. The user will be using an Android tablet to interact with the
Android app, so our team is building a tablet app.

Project Goals

On a high level, these are the the goals that we have defined for this project:

e The app should connect to VirtuTrace through a TCP/IP connection across the lowa State
wireless network.

e The underlying VirtuTrace instance (written in C++) should be able to receive data from the
Android app (written in Java) and also should be able to send data back when necessary.

e The Android app should have an easily accessible and understandable user interface that
allows the trained C6 technicians to use the app without having extensive underlying knowledge
of the implementation of the app.

e The app should allow the user to view all the objects in the scene and allow them to choose
which object they want to edit from an expandable list.

e The app should allow the user to “watch” objects and variables of their choosing.

e The app should allow the user to see a console view of the “watched” objects and see what
properties of these objects change over time.

e The app should allow the user to manipulate at least the following properties of a given object:
color, scale, location, and orientation.

e The app should allow for real time changes to the scene, and following this goal, VirtuTrace
should be able to handle real time configuration changes to various object properties.

e The app should allow the user to save changes that they made to objects in the scene so that
they can reload the reconfigured scene if necessary.

e The user should be able to get visual feedback of which object they have selected to edit as to
not make mistakes in selecting incorrect objects (e.g. a highlighted bounding box).




Deliverables

Our main deliverable will the Android application that will run on an Android tablet. Secondary
deliverables will be various documentation on how to use the app from within the C6 and also
information about the implementation for the app so future developers can easily understand how to
maintain and extend it. Additionally, we are providing some minor additions to the VirtuTrace code
base.

System Requirements

e The user should be given a way to edit properties such as color, dimensions/size, placement in
the scene, and rotation in the user interface.

e The system must provided the user with a listview or treeview that allows them to select objects
in the scene.
The system should provide visual feedback when a user has selected an object for editing.
If the user makes changes to an object in the scene, the system must reflect the changes in real
time (or with as little lag time as possible).

e The system should allow the user to save the current configuration if the user has made changes
to the environment.

Functional Decomposition

VT Remote and VirtuTrace have several large functional units. VT Remote has a network management
thread, a fragment to display the VirtuTrace environment structure, and a fragment to display properties of
a single item in VirtuTrace. Our modules in VirtuTrace include a network management thread, an action
queue, and an action listener.

The VirtuTrace network manager will look for an open port, create a TCP server socket on it, and wait for
commands from the client currently connected to it. After it receives a start message macro, it will add
the operation to an action queue after receiving the end message macro. The VirtuTrace action listener
will wait until VirtuTrace is not rendering, then check for an action in the queue and lock rendering if there
is. Once it has the lock, it will complete the action and update the queue front. If an action requires
VirtuTrace to send data back, the network manager will wait for it to return the data.

The main interaction with VirtuTrace requires a network manager for VT Remote. This manager will
respond to actions in other views and send messages to VirtuTrace. When an action needs to be
performed, the manager will send a start macro, the operation, the data (if any), and an end macro
through a TCP connection in an ASCII string or binary format depending on connection speed. Both
formats use a native Open Scene Graph notation for data representation.



There are three main Ul components to generate actions. The tab selector at the top of the screen
switches modes; one for editing the scene graph and another for the property map. Both of these views
represent the corresponding part of the VirtuTrace environment in a listview. When a user selects a tab,
VT Remote queries VirtuTrace for the latest environment state and updates the view. When a user
selects an item in the tree view, a second view on the right will query VirtuTrace for the current item
property states and show them in the view. If a user changes one of the properties, VT Remote will send
the change to the VirtuTrace which will update the simulation in real-time.

System Analysis

Interdependencies

Functionally, VT Remote will require a connection to an instance of VirtuTrace since it is a tool specifically
designed to augment a simulation in progress. However, the app is not dependent on VirtuTrace to run. It
will essentially idle until it makes a connection.

For VirtuTrace, there are not any dependencies on the VT Remote. It will function as normal regardless
whether it is connected to the Android app.

Potential Bottlenecks

The most threatening performance impact will come from the reliance on the wireless network for
communication. In an effort to reduce this impact, we will focus on optimizing network packet size and
minimizing the frequency of data transmissions.

Security

No sensitive data will be sent between the VT Remote and VirtuTrace. The only types of information that
will be transferred are configurable properties of the simulation or objects and the scene objects
themselves. Both sides will utilize Open Scene Graph, an open-source library, for serializing and parsing
the transmitted data. The library does not encrypt the data as there is no need for it.



System Block D

iagram

L4

*Android Runtime Application

properties

Network Manager Thread
e Connect to VirtuTrace app
e Query current VirtuTrace scene and ~

e Request changes to VirtuTrace
environment and config files

VirtuTrace Runtime Application on C6

[

3

Scene View
¢ Request scene data
and create tree list
view
e Can select an item to
show in datum view

Property Map View

Request application
properties and create
tree list view

Can select an item to
show in datum view

'}

}

Object/Single Datum View
e Request data about selected item in
scene or property view
e Request changes to scene/property
based on various input fields
e Request config file overwrite
e Store recent changes in a history buffer
which can be resent

The object view is always shown when there is an item selected in
the scene or property map views; only one of the scene or property
map views are visible at a time and will be off to the left side

TCP network connection

e Data are strings or
binary data depending
on connection speed

e Messages have a
start/end macro to
identify them

e After start, the first
identifier is the
operation to perform

e The second identifier
set is the data to
operate on

e Supports single client

*Network Manager Thread

Open TCP server socket
Receive scene/property
queries and create actions in
a queue

L J

*Action Listener Thread

Check action queue only
when frame is not rendering
Perform action at front
Update front

Update/Draw Logic Thread

Update scene and properties
on machines throughout
server

Synchronize rendering
machines

Lock action listener when
rendering

*Will be implemented by senior design team




|/0O Specifications

VT Remote

Being an Android app targeting tablets, VT Remote will utilize the device’s built-in touch input manager for
handling user input. Based on user input, it may then send data over a TCP/IP wireless connection to
VirtuTrace. Additionally, it will receive information, through the same connection, from VirtuTrace for
populating the list of scene objects, gathering a list of variables available to “watch,” etc.

VirtuTrace
VirtuTrace will send and receive wireless communication to and from VT Remote. It may also

communicate with a variety of other I/O devices. However, that communication and those devices will not
have any impact on VT Remote.

Interface Specifications

VirtuTrace - VT Remote Communication Interface

Scenes within VirtuTrace are built upon an existing open-source library called Open Scene Graph. It
provides the implementation and models for each scene object as well as many useful operations on
those objects. VirtuTrace will utilize this library for communication with VT Remote since it has functions
for serializing and deserializing the scene objects.

On the other side, VT Remote will use a SWIG (Simplified Wrapper and Interface Generator) Java
wrapper library that wraps around Open Scene Graph to provide the same serialization benefits within the
Android app.

To keep the interface consistent, we have defined a set of keywords to indicate the beginning and end of a
message, as well as a delimiter for easy separation of the elements within the message. Other than the
initial handshaking, VT Remote will initiate all communication and VirtuTrace will only respond. The
message syntax is shown below.

Field 1 - Start keyword

Field 2 - Operation

Possible operations are: GETS - get data for a specific scene graph node
SETS - set data for a specific scene graph node
GETP - get the value of a specific property map field
SETP - set the value of a specific property map field
STATUS - get the status of the last operation



Field 3 - Operands

Scene Graph: The first operand is a unique identifier for the specific node. The following operand(s)
depend on whether how many properties being affected, which varies depending on the node’s data type,
and whether they are getting set or retrieved.

Property Map: The first operand is the unique key for the specific property and the second operand is the
corresponding value.

Field 4 - End keyword
VT Remote - User Interface

The user interface for VT Remote is split into three main tabs: Scene Graph, Property Map, and Watch.
The Scene Graph and Property Map tabs are very similar. They both have a listview on the left hand side
of the screen that the user is allowed to traverse. Once the user selects an editable object in the list, its
modifiable properties are displayed in the screen space to the right.

SCENE GRAPH PROPERTY MAP Q Connected
. |

+ AvatarModel03
Radius

- AlertPointLight

Brightness
Intensi
Color s

+ TransformationMatrix

Visibility

VISIBLE

Scene Graph Tab Concept Rendering

The Watch tab allows the user to select a handful of variables, objects, and properties to observe how
they change as the simulation runs.This feature is for mostly for debugging purposes.



SCENE GRAPH PROPERTY MAP Q Connected

Watches

osgMainCamera Object Value

DirectionalLight02 num_tris 2643 (0xA53)

BackgroundColor 255 (0xFF)

num_tris

102 (0x66)
movelector
0 (0x0)
Background Color
unlockFPS_ true

unlockFPS_

Watch Tab Concept Rendering

HW Specifications

e Wireless Networking - 802.11a/b/g/n
e Screen Size/Resolution - at least 7.0” screen measured diagonally with at least 720p
(1280x720) resolution

Software Specifications
e Operating System - Android 4.2 or higher

Testing Procedures and Specifications

The testing for our system falls into three main areas: the android application, the VirtuTrace
functions, and the testing for the network managed between the two of them. Each area will be
tested using unit tests whenever possible to maximize automation as well as manual testing as
necessary.



VT Remote

Testing of the android will happen both under forced conditions and live conditions. The forced
conditions will guarantee that the android application can request and receive data, display data in
desired fashion, and then send changes. After testing under forced conditions, live standalone
testing and C6 testing will show that there is all around proper functioning of the application. We
also have a tool called Ul Automator that allows us to test the dynamic construction of Ul elements
automatically.

VirtuTrace

Testing of the VirtuTrace functions can be mostly done through unit tests and standalone live
testing. The unit tests will make sure that the functions perform as needed for the rest of the
application. Live standalone testing makes sure that the functions are behaving as expected under
working conditions.

Networking
The network tests fall into two areas. The first area is proper serialization, deserialization, and
transfer of data. The second area is speed testing which will be both virtual and live to account for

shear volume of data and also actual handling of the C6 network constraints. It is important that our
application maintain high speeds for all data volumes.

Implementation Issues and Challenges

The main implementation issues arise from the fact that we are interfacing with an already built
system. The vastness of VirtuTrace as an application when compared to our small application
means that our application must make the best use of built-in functionality. Though our application
derives some strength from VirtuTrace it also runs into problems when desires of our application
run contrary to what VirtuTrace can do. When this happens we must either write code that
circumvents the problems or add code to VirtuTrace that gives us the desired functionality.

Design Decisions

The project called for us to build an Android app, so this is clearly the chief reason we chose to
build the tablet app using Android. A big reason why Android is preferred in this project is because
it is open source and based in Java, a language that is very well known at lowa State and by most
developers. This allows for any developers in the future to quickly be able to pick up the project.
Another important design decision we made was the use TCP as the protocol for communication
between the C++ server and the Java Android app. We chose to do this because TCP has built in



error checking and correction, so if there are any issues with sending data back and forth between
the server and client, TCP can resolve most of them without the development team having to
change the implementation. One downside to using TCP over UDP is speed. The UDP protocol
allows data to be send much quicker over a network than TCP does, but because of the nature of
the data we are sending, we felt that having the error checking capabilities of TCP was more useful
to for this particular project than using UDP. We may revisit this decision as development
progresses and further network stress testing is done, but our current design has clear benefits in
using TCP over UDP.



