Garmin International: Energy Harvesting in Fitness Electronics MAY14-17

Tyler Chenhall Rebekah Dejmal Catherine Homan Allison Sapienza Omer Vejzovic Jeramie Vens

> Department of Electrical and Computer Engineering Iowa State University

Industrial Review Panel, Spring 2014

IOWA STATE

・ロト (周) (E) (E) (E) (E)

Outline

Background

- Problem Statement
- Concept Sketch
- Team

2 Project Plan

- Requirements
- Research

System Design and Testing

- Power Selection Circuitry
- Thermoelectric Heart Rate Monitor
- Mechanical Electric Foot Pod

IOWA STATE

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

Background

Project Plan System Design and Testing Summary Problem Statemen Concept Sketch Team

Outline

Background

- Problem Statement
- Concept Sketch
- Team

Project Plan

- Requirements
- Research
- 3 System Design and Testing
 - Power Selection Circuitry
 - Thermoelectric Heart Rate Monitor
 - Mechanical Electric Foot Pod

IOWA STATE UNIVERSITY.

・ロト (周) (E) (E) (E) (E)

Problem Statemer Concept Sketch Team

Problem Statement

- Garmin International produces several wearable fitness monitoring devices
- The goal was to find a way to maximize the battery life of at least one of these devices through the use of energy harvesting
- Another goal was to create a research document reporting on the group's findings for Garmin to use in their future products

IOWA STATE

▲□ → ▲ ■ → ▲ ■ → ▲ ■ → ● ● ●

Problem Statemer <mark>Concept Sketch</mark> Team

Concept Sketch

Heart Rate Monitor Energy Harvester

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Background

Project Plan System Design and Testing Summary Problem Statemer <mark>Concept Sketch</mark> Team

Concept Sketch

Foot Pod Energy Harvester

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Problem Statemen Concept Sketch **Team**

Subgroups were formed to develop two energy harvesting prototypes simultaneously

- Thermoelectric (Heart Rate Monitor) Group
 - Jeramie Vens
 - Catherine Homan
 - Allison Sapienza
- Electromechanical (Foot Pod) Group
 - Tyler Chenhall
 - Rebekah Dejmal
 - Omer Vejzovic

IOWA STATE UNIVERSITY.

・ロト (周) (E) (E) (E) (E)

Requirements Research

Outline

- Problem Statement
- Concept Sketch
- Team

2 Project Plan

- Requirements
- Research
- System Design and Testing
 - Power Selection Circuitry
 - Thermoelectric Heart Rate Monitor
 - Mechanical Electric Foot Pod

IOWA STATE UNIVERSITY.

・ロト (周) (E) (E) (E) (E)

Requirements Research

Constraints and Requirements

- Supply at least 10% of the power consumed by a device and fully power any added circuitry
- Interface to the latest device through existing circuitry
- Size must be smaller than a deck of cards and weigh less than 100 grams
- Operational in a variety of exercise scenarios
 - Fitness activities
 - Diverse environmental conditions
 - Different users
- Prototype cost less than \$50
 - Garmin's Economies of Scale should reduce the commercial cost

IOWA STATE

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

Requirements **Research**

Existing Energy Harvesting Products

- Luxury solar watches
- Intermittent transmitters (remotes, wireless sensors)
- Numerous research prototypes
- Typical applications are low power or have plenty of space for harvesting

IOWA STATE

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ • • • • • • •

Requirements Research

Viability Surveys

Results

- People surveyed generally would pay more for a heart rate monitor than a foot pod overall
- On average, people were willing to spend \$23.98 more for an energy harvesting heart rate monitor, and \$19.45 more for a foot pod
- Of people willing to spend over \$40 on a heart rate monitor, they are willing to spend \$36.39 more for energy harvesting
- Of people willing to spend over \$40 on a foot pod, they are willing to spend \$26.82 more for energy harvesting
- More information can be found in Appendix G of the final document.
 IOWA STATE

Details

UNIVERSITY.

・ロト (周) (E) (E) (E) (E)

Requirements Research

Energy Harvesting Research

- Thermal energy
 - Seebeck Effect
- Mechanical energy
 - Piezoelectric material
 - Faraday's Law

- Electromagnetic energy
 - Radio frequency
 - Solar radiation

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

IOWA STATE

・ロト (周) (E) (E) (E) (E)

Outline

- Problem Statement
- Concept Sketch
- Team
- Project Plan
 - Requirements
 - Research
- System Design and Testing
 - Power Selection Circuitry
 - Thermoelectric Heart Rate Monitor
 - Mechanical Electric Foot Pod

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Schematic

- Current measurement nodes
- Power multiplexer
- Simulated load and indicator
- ► Total price of \$5.04

IOWA STATE

For more details, see Section 5.3 of Final Document

Chenhall, Deimal, Homan, Sapienza, Vejzovic, Vens

Energy Harvesting in Fitness Electronics: MAY14-17

・ロト (周) (E) (E) (E) (E)

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Printed Circuit Board

For more details, see Appendix A of Final Document

- PCB of the selection and display board
- Size: 1"×1"
- Input: Energy connector from either energy harvesting board (Vout, Pgood, Ground), Battery, Modulation Signal
- Output: Pout

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design MATLAB Calculations

- Used MATLAB to calculate various capacitor values
- Found standard values within acceptable ranges
- Solved for efficiency and expected results
- Used these expected values during the testing phase

Excerpt from MATLAB Code

remercements accounty remercement - 730-3, 4 menty	
PinC2_Cap = 33e-12; % Farad	
f = 50000; http://www.state.com	
C2 = 1/((2*pi*f)^2*TransformerSecondarvInductance)-PinC2 Cap;	A Farad
C2 = 330e-127	* set this to standard value similar to calo valu
f = 1/(2*pi*sqrt(TransformerSecondaryInductance*(PinC2_Cap+C2)));	% Actuall Frequency (Nz). Goal: 10kHz-100kHz
68 C1 Capacitor	
C1 = 1e-9; % Farad (recomended for 1:100 transformer	
tt Squegging Resistor	
R_squeg = 499000; % ohms (recommended for a C2=330pF)	
44 Vost and VSTORE Capacitor	
Cout_min = I_burst*t_pulse/(Vout*droop/100))	
Cout max = 100* (I charge - I Q) / (f pulse*Vout*droop);	
I charge min = I burst*f pulse*t pulse+I Q	
Cout = 185e-6/	b pick this based on Cout min and Cout max
Catore min = (6e-6+I Q+I LDO+(I burst*t pulse*f pulse))*T store/(5	.25-Vout)
Catore = 100e-3; % F : Based on Catore min.	
bb Torn-on time	
t LDO = 2.2*Cout/(I charge - I LDO)	
5 Whit = (3*Catore)/(1 charge - 1.0 - 1.100)/60	

T_store_actual Cstore*(5.25-Vout)/(6e-6+I_Q+I_LDO+(I_burst*t_pulse*f_pulse))/60

For more details, see Appendix D of Final Document

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

UNIVERSITY

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision I: Schematics

IOWA STATE UNIVERSITY.

・ロト (周) (E) (E) (E) (E)

For more details, see Section 5.1 of Final Document

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision I: Board

IOWA STATE UNIVERSITY.

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Energy Harvesting in Fitness Electronics: MAY14-17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Schematic

For more details, see Section 5.1 of Final Document

- The TEG harvesting circuit
- LTC DC-DC converter and voltage regulator
- Energy storage via super capacitor
- The 20mm TEG costs \$16.00
- The board and other parts cost \$14.16 IOWA STATE UNIVERSITY.

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Printed Circuit Board

For more details, see Appendix A of Final Document

PCB of the TEG board

- Size: 1"×1"
- Input: TEG Connector
- Output: Energy Connector (V_{out}, P_{good}, Ground)

・ロト (周) (E) (E) (E) (E)

IOWA STATE UNIVERSITY.

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Demonstration

Demo

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Revision II: Testing Method

For more details, see Section 6.1 of Final Document

- Connected to the power selection board for testing
- Used with a 5mA load at 4Hz frequency and 2ms duty cycle
- Able to drive load with an ideal temperature difference between skin and ambient air

IOWA STATE

★ E ► ★ E ► E E • 9 Q @

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

IOWA STATE

▲冊▶▲≣▶▲≣▶ 差世 のなる

Energy Calculations

Charge stored in the super capacitor

•
$$C = \frac{Q}{V} \Rightarrow Q = CV = (220 \text{mF})(5.25 \text{V}) = 1.155 \text{C}$$

Energy stored in the super capacitor

•
$$W = \frac{1}{2}QV = \frac{1}{2}(1.115C)(5.25V) = 3.032J$$

 Therefore, when removed from ambient energy the circuit can continue to provide 3J of energy

Detailed Design

Initial Tests and Calculations

- Foot pod power was estimated by monitoring voltage across a series resistor
- Several mechanical harvesters were characterized by their average power output (Mide V21BL, below)

Load	5.0g	7.5g	10.0g	12.5g	15.0g	
(kΩ)	(μ W)					
4.7	-	-	38.39	50.86	72.37	
10	66.10	79.74	56.85	103.25	173.79	
47	170.52	246.25	158.92	448.45	555.14	
100	178.42	348.81	195.36	532.90	621.73	
470	71.53	118.00	242.78	301.80	296.46	IOWA STATE
1000	40.28	58.43	92.16	126.11	- 	UNIVERSITY

Chenhall, Deimal, Homan, Sapienza, Vejzovic, Vens

Energy Harvesting in Fitness Electronics: MAY14-17

TY.

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision I: Schematics

For more details, see Section 5.2 of Final Document

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens Energy

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision I: Board

IOWA STATE UNIVERSITY.

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

Energy Harvesting in Fitness Electronics: MAY14-17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Schematic

- Piezoelectric element
- LTC buck converter
- Mide's V21BL costs \$65.00
- The board and other parts cost \$9.99

・ロト (周) (E) (E) (E) (E)

IOWA STATE

UNIVERSITY.

For more details, see Section 5.2 of Final Document

Chenhall, Deimal, Homan, Sapienza, Vejzovic, Vens

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Detailed Design

Revision II: Printed Circuit Board

For more details, see Appendix A of Final Document

IOWA STATE UNIVERSITY.

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens

- PCB of the Piezo board
- Size: 1"×1"
- Input: Piezo element
- Output: Energy Connector (V_{out}, P_{good}, Ground)

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Demonstration

Demo

Power Selection Circuitry Thermoelectric Heart Rate Monitor Mechanical Electric Foot Pod

Revision II: Testing Method

For more details, see Section 6.2 of Final Document

- The board plugs into the power selection board
- To verify robust operation, tests were performed with the device attached to an individual during typical exercise activities
- For the mechanical group, tests included various running surfaces, stride cadences, and cantilever tip masses

IOWA STATE

- Current and power consumption has been measured for Garmin's fitness devices
- Revision I prototypes were assembled, tested, and used to develop circuit improvements
- Revision II prototypes were designed and created
- Extensive testing was conducted on the revision II boards
- Energy harvesting research and prototype information was compiled into a final document

IOWA STATE

・ロト (周) (E) (E) (E) (E)

 Deliver documentation and prototypes to Garmin and present findings at their location in Olathe, KS

Recommendations

We do not recommend either solution.

- Thermoelectric
 - Size
 - Temperature requirement
- Piezoelectric
 - Size
 - Cost

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens Energy Harvesting in Fitness Electronics: MAY14-17

IOWA STATE UNIVERSITY.

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

Any Questions?

IOWA STATE UNIVERSITY. < □ > < ৺> < ছ > < ছ > হা ত্\ে

Survey Questions

To evaluate market interest in an energy harvesting product, surveys were distributed at State Gym, an Iowa DOT office, and several other locations Survey Questions:

- Gender
- Amount of time spent exercising each week
- Maximum acceptable price of a battery powered HRM
- Would you pay more for a battery-less HRM?
- Maximum acceptable price of a battery powered foot pod
- Would you pay more for a battery-less foot pod?

IOWA STATE

Market Research Acceleration Test

Survey Questions

Chenhall, Dejmal, Homan, Sapienza, Vejzovic, Vens Energy Harvesting in Fitness Electronics: MAY14-17

Market Research Acceleration Test

Survey Questions

Heart Rate Monitor

Market Research Acceleration Test

Survey Questions

Market Research Acceleration Test

Walking

A D > A B
 A

UNIVERSITY.

三日 のへの

* 臣

Market Research Acceleration Test

Running

IOWA STATE UNIVERSITY.

三日 のへの

* 臣