Satsy Design Document

Team
May14 13

Date
Sunday, April 28, 2013

Members

Carl Chapman
Cody Hoover
Cole Groff
Kaitlin McAbee
Trevor Lund

Advisor
Kathryn Stolee

Introduction

Project Definition

This project is a web-based search engine for source code called Satsy. Satsy is based
on the fact that every program has one or more executable paths, and that Satisfiability Modulo
Theory (SMT) solvers can be used to evaluate whether or not a particular executable path in a
program can satisfy an input-output specification.

For testing, a small set of programs have had their paths encoded into the SMT-LIB2 [1]
format. Users will interface with Satsy client through the browser to send queries in the form of
input-output pairs. On the server side, Satsy will combine these user-defined input-output pairs
with the complete set of translated source code methods and execute Microsoft's Z3 [2] SMT
solver on each combination. Satsy will parallelize the execution of Z3 on these combinations so
this search can be done more quickly.

The results of Z3’s execution on each program path, input-output specification pair are
collected and returned to the user. The intention of this project is to rank these results based on
the number of input-output pairs a particular program was able to satisfy, and other related
metrics to be explored in the future. Once ranked results are displayed to the user, the user will
be able to refine their search and search again as desired.

Project Goals

e Satsy should be able to return source code that satisfies the user-specified input-output
pairs, ranked by its ability to satisfy the specification.

e Satsy should be able to conduct its search quickly and begin to return a user’s search
results in less than 5 seconds per search.

e Multiple users should be able to run searches at the same time. Satsy should be able to
support up to 10 concurrent users at a time with modest server resources, and this
number should scale with a more capable server.

e Satsy should perform consistently as the number of code snippets to search increases.

Deliverables

e A flexible and extensible platform to perform usability studies to validate Satsy as a viable
source code search engine.
Code containing search logic that parallelizes execution of Z3 and combines results.
An algorithm to sort the results of the Z3 search in an order that brings the most relevant
blocks of source code to the top of the results.

e A single-page web-client that sends queries to the server and displays results to the
user.

System Level Design

System Requirements

Functional Requirements

e Satsy will be able to accept multiple input-output pairs as search terms from each user,
up to 10 pairs.
Satsy will be accessible from anywhere that has internet access.
Satsy will return a set of source code snippets given a set of input-output pairs.
The source code that Satsy returns should be able to take the given inputs as
parameters and produce the given output as a returned result.

e The source code results nearer to the top of the search result page should be satisfiable
by most or all of the input-output pairs.

e Source code results that are satisfiable by all of the input-output pairs will be sorted by
other criteria to be specified later.

e Satsy needs to provide a clean interface to interact with the user, to be determined by
user feedback.

e Satsy will provide feedback to the user if they didn’t format their search terms correctly or
if an error occurred.
Satsy will display an input search box and an output search box.
Users will be able to add additional sets of search boxes on the search page.
The system will handle Java string, int, boolean, and character inputs, and allow
extensions for further language support.

Non-Functional Requirements

e The number of threads per search should be configurable so that it can match the
resources on the computing platform wherever Satsy is deployed.
o Metric: A configuration value ‘nThreadsPerSearch’ controls the number of threads
per search.
e Logging should provide information on the health and effectiveness of the system
o Metric: Trace and detail level logs will indicate search times, errors, and
information about the results returned.
e Users should quickly be shown the results of their search upon submitting their search
criteria.
o Metric: There shall be no more than 6 seconds between the user clicking the
search button and the user beginning to see their search results.
o Metric: Timeouts on at the overall search and individual solver level will keep
searches finite in length.
e Satsy needs to support returning many different source code results.

o Metric: Up to 1000 source code results can be returned.

e Satsy will be able to handle multiple user searches at once.

o Metric: Up to 10 searches at once will be supported.

e Results should be accurate.

o Metric: Results should return with a false positive rate of <15% and a false

negative rate of <5%.

Functional Decomposition

High Level Decomposition

Web-Facing

Client HTTP Module

JAVA

Figure 1: Functional Decomposition

At a high level, Satsy can be decomposed into three modules. The web-facing module interacts
with the client through HTTP, and communicates with the search logic module through Java.
The search logic module communicates with the web-facing module through Java and with the
data store module using JDBC. This architecture closely matches the ‘state-logic-display’

pattern.

Search Logic

JDBC

Data Store

Web-Facing Module

The Web-Facing Module module accepts input from the user and displays results, using the
three core functions of Satsy: ‘Initialize Search’, ‘Poll’ and ‘Request Update’.

User

Initialize Search

Satsy

Every 2 seconds Poll

> Return nResultsComplete

Perform Search
In Background

After 6 seconds, Request Update

and on button press

Return Only Completed Results

Figure 2: Satsy Sequence Diagram

Run SearchCallback
When All Results
Are Complete

When users enter input-output pairs (IOPairs) in the form and press ‘Search’, the ‘Initialize
Search’ function of the Search Logic module is called as shown in Figure 2.

Input Output
2004 true
1900 | false

Figure 3: IOPair examples

B
B
[+

Every 2 seconds, JavaScript in the client’s browser automatically calls the ‘Poll’ function of the
Search Logic module, which simply returns the number of completed results. The number of
completed results obtained by the Poll function is displayed in a badge on the ‘Show More
Results’ button as shown in Figure 4. When the user presses this button, the ‘Request Update
function of the Search Logic module is called, which creates a list of all the completed results,
ranks them and returns them for display. The ‘Request Update’ function is also called
automatically 6 seconds after the ‘Search’ button is pressed as a convenience for the client.

523--3
public static boolean isgraph(int ch){

return ("!' <= ch && ch <= '~");

}

Figure 4: Result and “More Results” Indicator

After a user has pressed Search, they can add, remove or change search parameters to modify
their search. If the user presses ‘Search’ with new parameters, everything about the previous
search is discarded and an entirely new search process is performed just like the initial search.

Data Store Module

Satsy searches a database of source code snippets. Each source code snippet is represented
in two separate ways: the source code text, and all of the unique equivalent paths through the
program. There can be many unique paths through a single method.

public static boolean isLeapYear(int year){
if (year % 4 ==0) {

additive6106 (mod year int6105))) |

if|(year % 1000 == 0|&&| year % 400 != O)|{

return false;

}

return true;

}

return false;

}

boolean6115 true))
relationalEq6113 true))
int6100 4))

int6102 0))

int6107 0)) |

relationalEq6108 (= additive6106 int6107)))]

relationalEq6108 true))

int61120)) |

int6110 400))

id nb|nc | ni|ns| m_id | enc_method

additive6111 (mod year int6110))) |

relationalEq6103 true))

6790010566—’

int6105 1000))]

relationalEq6113 (= additive6111 int6112))) |

680 [0|O|1|0| 566

Figure 5: An example of an encoded path through a source code snippet

As shown in Figure 5, the method ‘isLeapYear’ has two encoded paths in the database, each of
which has a different enc_method String where a particular path through the method has been
encoded in SMT. The blue and green boxes surround logical expressions as encoded in java

and SMT.

Table: boolean_enc Table: boolean_src
Table: string_enc Table: string_src
Table: char_enc Table: char_src
Table: int_enc Table:int_src
id:int id: int
L num_boolean: int - sre: longtext
num_string: int
L num_char: int L
num_int: int

— method_id: int —
enc_method: longtext

Figure 6: Database Schema

Because each method’s output is always one of the four supported types (booleans, strings,
chars and ints), the encoded and source code tables are partitioned by output type as shown in
Figure 6

Search Logic Module Overview

For each single search that is initialized, many solvers are started. All of the encoded paths
whose input-output signatures match the given I0OPairs are evaluated to see if the path can
satisfy the given IOPair. Each unique evaluation should evaluate to SAT or UNSAT (unless
errors occur). If an evaluation results in SAT, that means that the IOPair will be satisfied by the
encoded path.

Search Logic Module Detail

The Search Logic Module performs three core functions: ‘Initialize Search’, ‘Poll’, and ‘Request
Update’. When a client connects to Satsy for the first time, the Satsy servlet uses the Session
ID provided by Tomcat to create a SessionState object associated with that user. This
SessionState object has an ExecutorService and a ConcurrentHashMap that maps each
method id to a Result object as shown in Figure 7.

SessionState Result

- executor : ExecutorSeryice - method_id : String
- resultMap : CancurrentHashMap<String, Result= - n3aolversCompleted : int
- searchMame : String - nSolversCreated : int

- stateMatrix : intJ[]
+ initializeNewSearch(...) : void
+ getResultsCount() : int + incrementStateMatrix(int state, int pairlndex) : void
+ getRankedResults(...) : List=RankedResult= +incrementMSalversCompleted() : void
+isComplete() : boolean

Figure 7: Partial class diagrams for SessionState and Result classes

The Result object is where the outcome of individual Z3 executions are recorded. A Result is
complete only when all the solvers created for that result have completed.

The ‘Poll’ function uses the SessionState’s getResultCount() method, which simply iterates
through the resultMap and counts how many Results are complete. The ‘Request Update’
function makes a new list of results that are complete, ranks them and returns the ranked list to
the Web Facing Module.

The ‘Initialize Search’ function uses the initializeNewSearch() method. When the
initializeNewSearch() method is called, the old executor is stopped and a new executor,
resultMap and searchName are created. An SQL query is performed that obtains all the
encoded paths that have the same input-output signature as the IOPairs. The new, empty
resultMap is populated with one empty Result for each unique method id contained in the
outcome of the SQL query. An AtomicSearchSolver is created for each IOPair-encoded path
combination. See Figure 8.

AtomicSearchSolver

-enc_method : String
- pair : |OPair

- path_id : String
-result: Result

+ run() : void

Figure 8: Partial class diagram for AtomicSearchSolver

Once all of the AtomicSearchSolvers are created, they are submitted as a group to the executor,
which handles the task of running the solvers using a configuration-specified number of threads.

Each solver goes through four steps:
1. Check to see if the search has timed out.

2. Create a temporary smt file that combines the IOPair and the encoded path.
3. Build a Z3 process and execute it, waiting for the output stream.
4. Read the output of the stream and record the end state of the solver in the Result.

When all of the results in the resultMap are completed, a callback is executed that can do
whatever testing or development tasks are desired like logging, profiling, validation, etc.

Standards

e SMT-LIB Standard Version 2.0
The SMT-LIB Standard version 2.0 [1] is used in creation of SMT files. These files are
used by Z3 [2] to determine if certain code segments satisfy given search criteria. Z3 is a
theorem prover developed by Microsoft. Given a system of values, functions, and
constraints, Z3 can determine if the system is satisfiable or not.

System Analysis

The process of using the Z3 SMT-Solver is known to be NP-Hard. As such, an exhaustive
search of the problem space increases dramatically as the size of the problem space increases.
In our case, this problem space is the database of methods to search. To balance this, the
speed and number of processors need to increase as that database increases. In some ways,
the utility of the system is directly related to the size of the database, which results in managing
three primary variables: cost, performance, and utility. The current database is relatively small,
but the low performance free server solutions such as Amazon AWS do not meet our
requirements. A low-cost dedicated commodity server has demonstrated that it provides the
necessary performance at a reasonable cost for the current database size with room to grow.

Detailed Description

Interface Specifications

The user interface will be a single page web-app with two primary stages:
1. Search Stage: users will enter input/output strings representative of the desired
behavior. Results will be returned when the user hits search.

2. Results Stage: the user’s query will remain visible and, if modified, will allow the
user to requery. Below this will be an area of paginated results. There will be a
counter that lets the user see how many additional results the server has found.
When this is clicked the results will be returned and the displayed order will

10

change to reflect a combined ranking of all of the previously returned results and
the newly returned results. The results will show the method signature (if
applicable) and the code, as well as relevant ranking information.

Input Output

“file.txt" “file™

"document.docx™ "document” n

numberSatisfied -

b--6
private String trimFilename(String s){
return s.substring(®, s.lastIndex0f('.');
1
a-2

private String truncate(String s){
if (s.length < 3) {
return s;
} else {
return s.substring(®e, 3);

}

Figure 9: Web Client with Search Area and Results Section

Hardware/Software Specifications
e System Overview
The system consists of a software component that can run on most modern computers

and a piece of commodity hardware to host it. This will be managed and run out of Dr.
Kathryn Stolee’s office.

e Hardware Specifications
o Mac Mini with OS X Server
i. 4GB Memory
ii. 2.3GHz Quad-core Intel Core i7
ii. 2x1TBHDD
iv. ~ OS X Server
e Software Specifications
o Apache Tomcat 7.0.26
o Z3 High-Performance Theorem Prover 4.3

11

o MySQL Server 5.5.32
o Java 1.6

Validation and Verification
. Validation:
Validation answers the question of “did we build the right thing?” as well as making sure
that the product satisfies the client. To ensure that we are building the correct project, we
will have both requirement and design reviews.
A. Requirement review:

1. The client will look over the product at its current stage to confirm that it
meets the requirements as expected. If not, adjustments can be made in
the next iteration.

2. To ensure the everyone is on the same page for all of the requirements,
we will talk over what is planned for the next iteration. If there is any
confusion for a given requirement, we will discuss with the client until the
issue has been clarified.

B. Design review
1. For every iteration, we will meet with our client to have her look over the

product at its current stage in production. This will be to get feedback on if
the changes we have made during the last iteration are going in the

correct direction.
2. Atthe end of every iteration, each member of the team will present a brief

summary of their work to update the entire team.
II. Verification:
Verification answers the question “ did we build the product right?” as well as testing the
product for bugs in the system.

A. Documentation
To help with the review and understanding of the code, the code should be well

commented, including having Javadocs for each function. Major algorithms
should be explained step-by-step in the comments.
B. Testing

1. JUnit testing
a) All Plain Old Java Objects (POJOs) should have unit tests

b) Ranking modules should be unit tested.

2. Manual testing
a) The Web Facing Module should be able to be tested independently

of the Search Logic Module using mocks and debugging flags.
b) The Search Logic Module should be tested for correctness after
every major change, using debugging flags.
3. Automated testing
a) Verifiation of results should be checked using the ProtoResultMap

12

and SearchCallback features
b) Profiling of the system should be done to inform future optimization
efforts.

Testing Results

Validation

As planned, we continued to communicate with the client to make sure that the system would
satisfy her needs.

At the beginning of the second semester, we had several meetings with the client where we
discussed the performance of our initial version of Satsy. After some discussion, we came up
with the new system that provides partial results as the search continues in the background.

Verification

e JUnit Testing
o 100% of JUnit tests for Ranking and POJOs have passed at each iteration.
e Manual Testing

o The Web Facing Module has been manually tested at each iteration, and the
system behaves as desired.

o The Search Logic Module has been manually tested at each iteration, and the
system behaves as desired.

o Manual inspection showed some database entries to have incorrect input-output
mappings, which resulted in unexpected problems. The system was modified to
handle problems with database entries more gracefully, treating them as errors.
Later, these entries were repaired by our client, who is the only person who
knows how to generate encoded paths from source code snippets.

13

200000 30 200000 a0 200000 a0
L
5 5 L 25 L. - 25
150000 N 150000 St - 150000 1 Ay
d 20 ’ r 20 20
]
100000 ‘ % 15 100000 - E " L 15 100000 o 3—,. ¥ T 15
] f ’ A
b 10 y 10 Ve - 10
s0000 4 50000 T Ty 1 50000 Taha—
N s o b T 5
p : 3 . 0 _\v b o o \ ¥ r 0
0 5 10 15 0 5 10 15 0 5 10 15
200000 30 200000 r 30 200000 T . 30
" ¥ y y
Tl 5 " 25 > 25
150000)= 150000 { 150000 —5
0 s & 0 ? 20
> ’)
100000 —— O 15 100000 < B . A {15 100000 2 15
Y 10 10 A 10
50000 h s | 50000 ik y YT b 50000 T— Y |
: 4 5 " I ¥ 5
b . g VS Yy
o HYY 0 0 +Hivk 0 o HVYY o
0 5 10 15 a 5 10 15] 5 10 15
200000 & 30 200000 a0 200000 > a0
. b res 2 »
p @ 5 5 3 25
150000 - 150000 150000 s
- 0 y 0 & i)
4 3
100000 = 15 100000 ~ 4 15 100000 15
10 d 10 \ Dy 10
50000 = i 50000 » I 50000 |)
s S o 1) gy S, 5 = o 5
0 LL e e] 0 --e"tl-.-e-.-.-e-.-. 0 ELL 4 4 SEEEE o
0 5 10 15 0 2 4 6 B 10 12 0 5 10 15
P:3 P:5 P:10

Figure 10: Results of Automated Chart-Writing program run on the AWS-based Satsy system
performed in January 2014.

e Automated Testing
o Correctness validation on the initial system showed that the only incorrect results
were a result of timeouts caused by AWS cpu throttling NOTE FIGURE.
o Automatic Verification of the new system is still in development at the time of this
report.

Automated Testing Results Explained

Each of the 9 charts has three series: the brown diamond series which is the total number of
milliseconds per user for a set of searches, the blue square series which is the average number
of milliseconds per user search, and the yellow triangle series which is the total number of
failures per run. Each node of each series is the result of 3 averaged test runs. The values on
the x-axis convey the number of users. The values on the y-axis convey number of failures for

14

the yellow triangle series, and milliseconds for the other two series. The capital ‘T’ values
varying vertically in the image denote different timeout values in seconds. The capitol ‘P’ values
varying horizontally in the image denote different pauses between the searches in seconds.
Some distortion in these charts is due to the fact (unknown until after the charts were made) that
the free tier of AWS is cpu-throttled at some regular interval. The most interesting result found
by this investigation was that a low timeout value is the sole cause of failure. This is the case
because the threads performing the search are not able to finish because the cpu is throttled by
AWS about every 5 or 6 minutes. This means that the first few searches consume most of the
CPU time provided for the 5 minute interval, and then the rest of the searches proceed much
more slowly.

Implementation Issues and Challenges

e Learning how to use Amazon Web Services (AWS)
Amazon Web Services was used to setup a web server which allows clients to interface
with the Satsy system. Amazon Web Services provides free-tiered versions of their
Elastic Compute Cloud (EC2), which can be used to run micro instances with
server-oriented operating systems. After figuring out how to signup for and set up a
micro instance, it is easy to install a web server which provides the interface necessary
for clients to interface with the Satsy system. The biggest challenge with setting up an
EC2 free-tiered micro instance is digging through Amazon’s convoluted trove of AWS
documentation to find out how to setup and use an EC2 micro instance. Once this
hurdle is overcome and an EC2 micro instance is set up and working, everything
becomes smooth sailing.

e Configuring Apache Tomcat to run on port 80
Apache’s Tomcat web server software runs on port 8080 by default. The standard port
for serving content via HTTP is 80. Changing Tomcat’s port to 80 is as simple as
changing an XML configuration file. What can be challenging, though, is when another
web server is already using port 80. An example is when using Apache’s standard HTTP
web server along with Tomcat. This can cause configuration headaches trying to get the
two to work together. Fortunately, Satsy’s web server is only running Tomcat and there
is no need to get two different web servers working nicely together.

e Configuring development environment using Eclipse and Tomcat
The easiest way to set up a development environment which allows Eclipse and Tomcat
to work well together is to use Eclipse’s latest version of their IDE for Java EE
Developers (Kepler Service Release 1). This version of Eclipse comes with the Apache
Tomcat 7.0 adapter installed. Installing this adapter with older versions of Eclipse can be
cumbersome. With the Apache Tomcat 7.0 adapter already installed the only other setup
needed is to let Eclipse know where Tomcat’s binary directory is located. Once Eclipse
knows the location of Tomcat, server startup and web application execution are as
simple as pressing a “go” button.

15

e Setting up a Bitbucket repository to allow collaborative development
Working in a collaborative development environment sometimes requires a central
repository for storing and maintaining project code and files. Bitbucket is a service that
allows users to store and access Git repositories. One challenge is figuring out how to
get past Bitbucket’s maximum allowed repository collaborators, which is set at 5.
Fortunately, Bitbucket allows users with educational email addresses (ending with .edu)
to have an unlimited number of collaborators.

e Getting JDBC to work with MySQL
JDBC (Java Database Connectivity) can be used to allow Java code to communicate
with and use MySQL. It can be challenging figuring out what version of the JDBC driver
is necessary for certain projects and how to integrate them with Java code.

e Converting Redis database to MySQL database

Redis is an in-memory key-value data store, which was being used in Dr. Stolee’s
prototype to store encoded methods and source code. Because the product needs to
serve multiple clients, handling concurrent requests effectively, MySQL was chosen as
the data store technology for the project. Some effort was required to transition from
using Redis to using MySQL to store encoded methods and source code. These
challenges included learning about Redis, redesigning the schema, and tracing through
prototype code so that the existing encoded methods and source code could be exported
into the new MySQL data store.

e Converting System from Synchronous to Asynchronous Model

The system was originally designed to behave synchronously such that a client would
make a query and wait for a complete result set to be returned. It became obvious that
our search was taking far too long so the system was redesigned. This brought with it a
lot more complexity which caused challenges in implementation. It created more points
of interaction between the server and the client, timers to keep track of, and a more
complex user experience to manage.

Appendices

Appendix I: Operation Manual

1. Install Tomcat and MySQL on your server
a. First you need to download the binary file for the correct version of Tomcat from
http://tomcat.apache.org complete the installation.
b. For MySQL, you need to download it from http://dev.mysqgl.com/downloads/
i. The context.xml file of Tomcat should have these tags:

<context-param>

16

http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org&sa=D&sntz=1&usg=AFQjCNHBu2JLFZrvXmZeOUW6gzhJ6FTjpw
http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org&sa=D&sntz=1&usg=AFQjCNHBu2JLFZrvXmZeOUW6gzhJ6FTjpw
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNGMMKrIDgeiKr3jBIchcsY4fnyZow
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNGMMKrIDgeiKr3jBIchcsY4fnyZow

<description>an external testing switch for detailed examination of the]
inner states of the search process</description>
<param-name>detail</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<description>an external debugging switch for GUI code</descriptions:
<param-name>guiDebug</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<description>The maximum search duration in
Milliseconds</description>
<param-name>maxSearchDurationMS</param-name>
<param-value>100000</param-value>
</context-param>
<context-param>
<description>The number of threads to create per
search</description>
<param-name>nThreadsPerSearch</param-name>
<param-value>8</param-value>
</context-param>
<context-param>
<description>an external debugging switch for solver
code</description>
<param-name>solverDebug</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<description>an external testing switch for tracing the most critical
milestones of the search process</description>
<param-name>trace</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<description>the absolute path to the folder containing the z3
executable where temp files will be written</description>
<param-name>z3Path</param-name>

<param-value>/Users/carlchapman/Documents/Schoolwork/ISU7_fall_2013/4
91/z3stuff/bin</param-value>
</context-param>

17

<context-param>
<description>the number of seconds to allow z3 to run on an atomic
search until giving up</description>
<param-name>z3TimeoutSEC</param-name>
<param-value>10</param-value>
</context-param>

The web.xml file of Tomcat should have these tags inserted after the
default servlet
(The default servlet is shown here so do not copy the <servlet> tag)

<servlet>
<servlet-name>default</servlet-name>
<servlet-class>org.apache.catalina.servlets.DefaultServlet</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>
<init-param>
<param-name>listings</param-name>
<param-value>false</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<context-param>
<param-name>Z3Path</param-name>
<param-value>/home/ubuntu/z3</param-value>

</context-param>

c. External JAR files
i.
ii.

iii.

Tomcat looks for JAR files in the folder /usr/share/tomcat7/lib
When a new JAR file is added, Tomcat must be restarted
List of External JAR dependencies
1. GSON (http://code.google.com/p/google-gson/downloads/list)
2. mysgl-connector-java-x.x.x-bin.jar (
http://dev.mysql.com/downloads/connector/j/)

d. Z3 directory and executable permission with Tomcat
i.

Change the z3 directory and all of its contents to have ‘tomcat7’ as the
owner and ‘staff’ to be the group.
Add users ‘tomcat7’ and ‘ubuntu’ to the group ‘staff’.

18

http://code.google.com/p/google-gson/downloads/list
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdownloads%2Fconnector%2Fj%2F&sa=D&sntz=1&usg=AFQjCNHYgLV4ist1sGVWK-Nyfpn7a41aZw
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdownloads%2Fconnector%2Fj%2F&sa=D&sntz=1&usg=AFQjCNHYgLV4ist1sGVWK-Nyfpn7a41aZw

iii. Change the z3 directory and all of its contents to have the permissions
value ‘770’. This restricts read/write/execute to only the owner and
members of the group.

iv. Restart the server.

2. mysqgldump import
a. Log into mysql as root
i. shell-prompt#mysqgl —u root —p
b. Create a database called satsy
i. mysql-prompt>create database satsy;
c. Exit mysql
i. mysql-prompt>exit
d. Load the dump file
i. shell-prompt#mysql —u root —p satsy < satsy.sqldump
3. Deploy .war file
a. Right-click on project in eclipse > Export > WAR File (needs J2EE eclipse).
Go to your server’s manager location.
Login using manager-gui credentials.
Go to Deploy > WAR file to deploy.
Select WAR file to upload.
Click Deploy button.

~0ao0C

Appendix Il: Alternative Versions

e Initial Synchronous Model

The system was originally designed to behave synchronously such that a client would make
a query and wait for a complete result set to be returned. Each time the user hit “search”, an
HTTP GET request was sent to the server which handled it in a doGet method. This handled
starting our search sequence and waiting for the entire search space to be tested, and then
matching results would be ranked and returned to the client which was blocked and waiting
for these results. This process took several minutes to complete, and in some cases took
significantly longer. This was clearly unacceptable performance and led to the redesign of
what we have now.

e RESTful APl Model

Understanding that this was to be a web accessible solution, it seemed useful to have
alternative ways to query for results programmatically. To accomplish this, the server could
respond to HTTP requests sent to well defined URL’s conforming to RESTful API
conventions to return results. This seemed feasible and advantageous on top of our initial
synchronous model described above, but became too complex to implement in time on top
of the new asynchronous model.

19

Appendix lll: Other Considerations.

e NP-Hard is Hard

Despite having what we thought was a small problem space, the NP-Hard nature of the
problem caused very noticeable performance issues. It made it very clear the importance of
heuristics and approximations, concurrent searching, and reduction of the problem space.
There is no “fast” way to solve our problem, but there are ways to get around that.

e AWS Throttling

Our initial platform for development and testing used the free tier of Amazon Web Services’
Elastic Compute Cloud platform (Amazon EC2). While in the middle stages of development
we noticed that Satsy’s search query responses would become very slow or halt altogether.
At other times, query responses would arrive more quickly. Through investigation and
recording of response times, it became evident that the Amazon EC2 service was
implementing some form of CPU throttling. We were being granted a certain amount of CPU
resources every 5-6 minutes. Once these resources were consumed (which took about 15
seconds of 1 user searching), we were left with whatever spare CPU bursts were available.

References

[1] http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf, http://www.smtlib.org/
[2] http://z3.codeplex.com/

[3] http://aws.amazon.com/ec2/

[4] http://releases.ubuntu.com/precise/

[5] http://tomcat.apache.org/tomcat-7.0-doc/

[6] http://www.mysql.com/

[7] http://www.oracle.com/technetwork/java/javase/jdbc/index.html

[8] http://getbootstrap.com/2.3.2/

20

http://www.google.com/url?q=http%3A%2F%2Fsmtlib.cs.uiowa.edu%2Fpapers%2Fsmt-lib-reference-v2.0-r12.09.09.pdf&sa=D&sntz=1&usg=AFQjCNEMPeQGG5Wn4VCT4MgD7ltV5jJ61g
http://www.google.com/url?q=http%3A%2F%2Fwww.smtlib.org%2F&sa=D&sntz=1&usg=AFQjCNGCm6vEJHlusmjp3jgB4eRHh1DHRA
http://www.google.com/url?q=http%3A%2F%2Fz3.codeplex.com%2F&sa=D&sntz=1&usg=AFQjCNGjMSdv5H0rcoy2HdR7FaXjWSZL-Q
http://www.google.com/url?q=http%3A%2F%2Faws.amazon.com%2Fec2%2F&sa=D&sntz=1&usg=AFQjCNGdVfqGba8hJnfnihNs2-MtB2HynA
http://www.google.com/url?q=http%3A%2F%2Freleases.ubuntu.com%2Fprecise%2F&sa=D&sntz=1&usg=AFQjCNHyieRmYawGoRWrYee4H8ZPcWJJDw
http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org%2Ftomcat-7.0-doc%2F&sa=D&sntz=1&usg=AFQjCNFKL4Iuz1F7NIAaEWkgOef8oZHaAg
http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2F&sa=D&sntz=1&usg=AFQjCNEHD1qxgs8Oh5pbqgZIuBzgSIfo0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.oracle.com%2Ftechnetwork%2Fjava%2Fjavase%2Fjdbc%2Findex.html&sa=D&sntz=1&usg=AFQjCNH8oGGr-V1_aesadFg40rhJZKApQQ
http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com%2F2.3.2%2F&sa=D&sntz=1&usg=AFQjCNECZHD0q7JzzK8IyXpXDTkIAhcqFA

	Introduction
	Project Definition
	Project Goals
	Deliverables

	System Level Design
	System Requirements
	Functional Requirements
	Non­Functional Requirements

	Functional Decomposition
	High Level Decomposition
	Web­Facing Module
	Data Store Module
	Search Logic Module Overview

	Standards
	System Analysis

	Detailed Description
	Interface Specifications
	Hardware/Software Specifications
	Hardware Specifications
	Software Specifications

	Validation and Verification
	Testing Results
	Validation
	Verification
	Automated Testing Results Explained

	Implementation Issues and Challenges
	Learning how to use Amazon Web Services (AWS)
	Configuring Apache Tomcat to run on port 80
	Configuring development environment using Eclipse and Tomcat
	Setting up a Bitbucket repository to allow collaborative development
	Getting JDBC to work with MySQL
	Converting Redis database to MySQL database
	Converting System from Synchronous to Asynchronous Model

	Appendices
	Appendix I: Operation Manual
	Appendix II: Alternative Versions
	Initial Synchronous Model
	RESTful API Model

	Appendix III: Other Considerations
	NP-Hard is Hard
	AWS Throttling

	References

