
DESIGN DOCUMENT

MAY14-11, IMPEDANCE MEASUREMENT DEVICE FOR
DETECTION OF CYANO-BACTERIA

CLIENT
GROUP MEMBERS

Tyler Bohlke
David Callen

Danielle Kimler
Watson Mulder

CLIENTS/ADVISORS
Dr. Degang Chen

Dr. Nathan Neihart

May14-11

System Design Overview

Requirements

The device has several requirements to allow for

ease of use for the intended customer.

Speed

The current testing speed for the average user is

on the order of days. The goal for this device is to

not only provide the user with same-day results,

but to have results within 10 minutes.

Size

With this device, the lab comes to the user—

without the size of laboratory-grade equipment.

The intention is for the size of the product to be

small enough to be held in the customer’s hand.

Accuracy

The device is being designed with a goal of 1%

accuracy in microcystin concentration

measurement. Precision in the measurement of

this toxin is vital to the application, as the lives of

animals and people may depend on it.

Usability

The final user of this product will not need to have

a technical background to utilize the device. All

measurement can be done via a simple user

interface.

Microcystin-LR
concentration

~0.5ug/L->20ug/L

Capacitance 160-175 nF (3200-
3500 nF/cm^2)

MCLR Capactiance
change

1.5-3.0 nF (30-60
nF/cm^2)

Area of probe 0.049087 cm^2

Size of PCB 3"x4"

Supply Voltage Run off 9V battery or
perhaps 8 AAs (12V)

Output resolution 10 bits - between 160
and 175 nF:
Range of 15nF, 14.65
pF step

Measurement Time Below 10 minutes

Measurement Size 500mL sample size

Impedance
measurement
technique

Bridge method

Probe model Series RC circuit

LCD Display 6 cm x 8cm

Definitions
 Zu - The internal impedance of the input to

the microcontroller. This input reads the
voltage difference across Zu to determine if
the bridge is balanced.

 Ct - The tunable capacitance of the tuning
branch in the bridge, adjusted by the
microcontroller.

 Rt - The tunable resistance of of the tuning
branch in the bridge, adjusted by the
microcontroller.

 Bridge - The part of the circuit that is for
impedance measurement, consisting of
four impedance branches. When the ratio
of the branches is satisfied, the circuit is
balanced, and a value for capacitance can
be extrapolated. Insert pic of bridge here

 MATLAB - Simulation software used for
determining the characteristics of our
bridge.

Functional Decomposition

Before the device is used, it undergoes an initial
calibration step to make sure that the bridge is
balanced, so that it outputs an accurate reading of
the capacitance. The microcontroller accomplishes
this by adjusting the tunable components of the
circuit until the bridge is as balanced as possible.

After this, the device is immersed in the suspected
water. If there is microcystin present in the water,
then the bridge will become unbalanced, due to the
capacitance change. The microcontroller again
goes to work, adjusting the tunable capacitance
until the bridge is balanced again. The
microcontroller keeps track of the capacitance it
adjusts, and uses this to calculate the capacitance
change from the microcystin, and the
corresponding microcystin concentration.

Design Specifications

Input/Output

Input
The input to our circuit is composed of two components: an oscillator, and an electrode painted with
antibodies that changes in capacitance under specific ranges of microcystin concentration.

o The electrode is the most crucial input component. This piece changes in capacitance based on
microcystin concentration. When the capacitance changes, the bridge becomes
unbalanced. The bridge is then balanced with the microcontroller, which yields values for
concentration and capacitance.

o The oscillator provides a signal for the input of the bridge and serves as a reference for the
voltage across Zu.

May14-11

[

] [

] [

]

 () ()

Finally, the microcontroller sends the information to an LCD, which will give a reading of the
capacitance and the microcystin concentration, along with a diagnosis of the safety level of the
water.

Analysis

The Circuit
The main emphasis of our analysis of the bridge circuit was finding a relationship between the
voltage across Zu and the known impedances, along with the input voltage from the oscillator. The
branches of the bridge can be expressed by the matrix:

When solving this matrix (in MATLAB), the intent was to find the current through Zu and then
multiplying by said impedance.

The final expression for Zu can be found in the APPENDIX. Once we obtained this function of
known variables, we were able to use it to simulate several parameters of the circuit; including how
the output across Zu is affected by different oscillator wave types, and what the voltage change
across Zu is for different values of Ct.

PLACE PHOTO HERE,

OTHERWISE DELETE BOX

May14-11

Output
The output of our circuit is sent from the microcontroller
to the LCD. It provides the user with data regarding the
capacitance measured and the concentration of
microcystin.

User Interface
The user interface is simple enough that a non-
technical individual will be able to successfully use the
device. One will simply turn the circuit on, place the
designated electrode into suspect water, and wait. A
few moments after the electrode has been submerged,
the LCD will present the capacitance and the
concentration of the microcystin, and whether or not
the water is safe.

Hardware
The final circuit will have six main hardware
components: an oscillator, a balancing bridge, a
feedback network from the microcontroller to the
bridge, an amplifier for the voltage across Zu, a
microcontroller to control the bridge and to serve as a
user interface, and an LCD.

1. The Oscillator - The oscillator serves as the
primary input to the bridge. Its purpose is to
facilitate a usable frequency to be measured
across the bridge. It will be composed of a
sinusoidal waveform of an amplitude yet to be
determined. The operating frequency of the
oscillator is 100 kHz. This frequency is best
suited for accurate measurements of voltage
across our bridge.

2. The Balancing Bridge - The balancing bridge
is the core of our circuit. It is composed of four
separate impedances, one of which is tunable
by the microcontroller. Once the bridge satisfies
the impedance ratio, the voltage across Zu, will
be essentially zero, and we will be able to
extrapolate a value for Cm.

3. The Feedback Network - The feedback
network is, in itself, part of the bridge, but it
is its own separate piece of hardware. It is
composed of an electronically tunable resistor
and capacitor. These two elements are
controlled by the microcontroller in order to
balance the bridge by satisfying the impedance
ratio.

4. The Amplifier - The amplifier is needed to
deliver a measurable voltage from Zu to the
microcontroller. When the voltage across Zu
gets too small (in the process of balancing the
bridge), it will not produce a signal large enough
for the microcontroller to recognize. When the
small signal is amplified, the microcontroller can
tune it to a point where it is small enough for a

Hardware

The final circuit will have six main hardware components: an oscillator, a balancing bridge, a
feedback network from the microcontroller to the bridge, an amplifier for the voltage across Zu, a
microcontroller to control the bridge and to serve as a user interface, and an LCD.

1. The Oscillator - The oscillator serves as the primary input to the bridge. Its purpose is to
facilitate a usable frequency to be measured across the bridge. It will be composed of a
sinusoidal waveform of an amplitude yet to be determined. The operating frequency of the
oscillator is 100 kHz. This frequency is best suited for accurate measurements of voltage
across our bridge.

2. The Balancing Bridge - The balancing bridge is the core of our circuit. It is composed of
four separate impedances, one of which is tunable by the microcontroller. Once the bridge
satisfies the impedance ratio, the voltage across Zu, will be essentially zero, and we will be
able to extrapolate a value for Cm.

3. The Feedback Network - The feedback network is, in itself, part of the bridge, but it is its
own separate piece of hardware. It is composed of an electronically tunable resistor and
capacitor. These two elements are controlled by the microcontroller in order to balance
the bridge by satisfying the impedance ratio.

4. The Amplifier - The amplifier is needed to deliver a measurable voltage from Zu to the
microcontroller. When the voltage across Zu gets too small (in the process of balancing
the bridge), it will not produce a signal large enough for the microcontroller to
recognize. When the small signal is amplified, the microcontroller can tune it to a point
where it is small enough for a precise measurement.

5. The Microcontroller - The microcontroller is the interface between the bridge, user input,
and LCD output. It will have a least a 10-bit ADC for taking voltage inputs. It is embedded
with the tuning algorithm which adjusts the capacitor and resistor for tuning the bridge, and
for tuning the feedback resistors for the amplifier to continuously increase the amplification
as the voltage across Zu drops. Because it tunes the capacitor values, it will know the final
value of capacitance (and thus the concentration of microcystin) and will output those
values to the LCD.

6. The LCD - The LCD serves as the display
for the user. The values obtained from the
microcontroller (capacitance and
concentration of microcystin) will be displayed
for the user to determine if the levels of
microcystin are safe for any purpose.

Software

The software used for the algorithm is simply
block modules of MATLAB code (will be
implemented in C for the microcontroller in the
spring of 2014). Each block tunes a specific
element and works in conjunction with the
microcontroller. One block of code is used for
tuning the resistor Rt, and another block of
code tunes the capacitor Ct. In order to
balance the bridge, the microcontroller uses a
binary search algorithm.

For example, in order to balance the bridge in
response to a capacitive change, the
microcontroller uses the following procedure:

1. Start by setting the upper limit of Ct at
the maximum, and the lower limit at the
minimum.

2. Tune Ct to the center of the range
between the upper and lower limits
(this will be Ct1), and read the voltage
Vu. This will be Vu1.

3. Tune Ct one step higher (this will be
Ct2), and read Vu again. This will be
Vu2.

4. If Vu2 is less than Vu1, we need to
adjust the capacitance higher. Set the
lower limit of the Ct range to be at Ct1,
and repeat from step 2.

5. If Vu2 is greater than Vu1, we need to
adjust the capacitance lower. Set the
upper limit of the Ct range to be at Ct1,
and repeat from step 2.

The program breaks out of the loop when we
reach the limit of our precision, i.e., when Ct2
exceeds the upper limit. The microcontroller
then uses the current value of Ct1 to calculate
the capacitance change from the microcystin.

Simulation

We simulated all of our design parameters in
MATLAB. The simulations completed were:
 A simulation of the change in voltage

across Zu as a function of a variable
capacitance Ct

 A simulation to find the change in tunable
values of Ct (range and step size)as the
concentration of microcystin increased

 A simulation for the amplitude of the voltage
across Zu as the waveform of the oscillator
changed (adding harmonics to a sine wave)

 A simulation of the tuning algorithm that
includes
o Tuning Ct using a given step size
o Tuning Rt using a given step size
o Tuning the amplifier with a given step

size

Testing

Testing will occur once the prototype is
complete. This process will occur in the spring
of 2014 and will be comprised of debugging any
hardware or software issues. The hardware will
be installed on the PCB in the spring, and the
tuning algorithm will be tested and implemented
in C on the microcontroller by then as well.

Prototype

Our team is working towards a prototype by the
end of the semester. The prototype will include
a fully laid-out printed circuit board, and all
components will be selected. We are at the
point where we know what components we
need, but we don’t know the specific part
numbers yet. After Thanksgiving break we will
have most of the simulations, along with the
algorithm complete, and the necessary
components selected. This will lead us into
board layout, and then testing by the spring of
2014.ue

Figures

The Necessity of Sine Wave Purity at the Bridge Input

A balanced bridge with no harmonic distortion in Vs

A balanced bridge with three even harmonics at the input (Vs)

An unbalanced bridge with no harmonic distortion in Vs

Cx = 14pF rather than 16pF

An unbalanced bridge with three even harmonics at the input (Vs)

Cx = 14pF rather than 16pF

f = 100000;
w = 2*pi*f;

Fs = 1/10000000000; %sampling rate
t = [0:Fs:0.00005];

Rm = 10000; % estimated Rin of microcontroller

Ra = 2500; % the value guiven to us by the grad students
Rp = 2500;
Rt = 2500;
Rx = 2500;

Ca = 16e-12; % in Farads, the e-12 means pico
Cp = 16e-12;
Ct = 16e-12;
Cx = 14e-12;

Xa = 1/(w*Ca);
Xp = 1/(w*Cp);
Xt = 1/(w*Ct);
Xx = 1/(w*Cx);

Za = Ra-1i*Xa; % we can define our imedances however we want right now,
Zp = Rp-1i*Xp; % so i just used a series res and cap
Zt = Rt-1i*Xt;
Zx = Rx-1i*Xx;

Vs = cos(t*w)+cos(2*t*w)/2+cos(4*t*w)/4+cos(6*t*w)/6;

%The expression for Vrm in terms of Vs and known impedances given by
%the Vrm solution code
Vrm = -Rm*((Vs*Zp + (Rm*Za*(Rm*Vs*Za + Rm*Vs*Zp + Vs*Za*Zp +

Vs*Za*Zx))...
/(Rm*Za*Zt + Rm*Za*Zx + Rm*Zp*Zt + Rm*Zp*Zx + Za*Zp*Zt + Za*Zp*Zx + ...
Za*Zt*Zx + Zp*Zt*Zx) + (Rm*Zp*(Rm*Vs*Za + Rm*Vs*Zp + Vs*Za*Zp + ...
Vs*Za*Zx))/(Rm*Za*Zt + Rm*Za*Zx + Rm*Zp*Zt + Rm*Zp*Zx + Za*Zp*Zt + ...
Za*Zp*Zx + Za*Zt*Zx + Zp*Zt*Zx) + (Za*Zp*(Rm*Vs*Za + Rm*Vs*Zp + ...
Vs*Za*Zp + Vs*Za*Zx))/(Rm*Za*Zt + Rm*Za*Zx + Rm*Zp*Zt + Rm*Zp*Zx...
+ Za*Zp*Zt + Za*Zp*Zx + Za*Zt*Zx + Zp*Zt*Zx))/(Rm*Za + Rm*Zp + Za*Zp...
+ Za*Zx + Zp*Zx) - (Rm*Vs*Za + Rm*Vs*Zp + Vs*Za*Zp + Vs*Za*Zx)...
/(Rm*Za*Zt + Rm*Za*Zx + Rm*Zp*Zt + Rm*Zp*Zx + Za*Zp*Zt + Za*Zp*Zx...
+ Za*Zt*Zx + Zp*Zt*Zx));

figure
subplot(2,1,1);
plot(t,Vs);
grid on
title('Unbalanced Bridge (Cx = 14pF), with added harmonics');
xlabel('Time in 10s of micro seconds');
ylabel('Amplitude of Vs in volts');
subplot(2,1,2);
plot(t,abs(Vrm),'red');
grid on
xlabel('Time in 10s of micro seconds');
ylabel('Amplitude of Vrm in volts');

Tuning Algorithm

Start

 Set Ct_upper = Ct_max and
Ct_lower = Ct_min

 Ct1 = (Ct_upper+Ct_lower)/2

 Ct2 = Ct1+Ct_step

 If V(Ct1) > V(Ct2)

If V(Ct1) < V(Ct2)

 Ct_lower = Ct1

 Ct1 = (Ct_upper+Ct1)/2

 Ct2 = Ct1+Ct_step

 Ct_upper = Ct2

 Ct1 = (Ct_lower+Ct1)/2

 Ct2 = Ct1+Ct_step

If V(Ct1) < V(Ct2)

If V(Ct1) > V(Ct2)

If V(Ct1) < V(Ct2)

If V(Ct1) > V(Ct2)

Final value of Ct

(this is used to solve for Cm

using the bridge eqn)

If Ct2 > Ct_upper If Ct1 < (Ct_lower + Ct_step)

7e-5

The Effects of Unbalanced Bridge Conditions

The current (angle and magnitude) and voltage (magnitude) across Rm as Cx varies from

1pF to 40pF while Rx remains balanced

The current (angle and magnitude) and voltage (magnitude) across Rm as Cx varies from

1pF to 40pF while Rx is 4x the size of the rest of the bridge resistors

The current (angle and magnitude) and voltage (magnitude) across Rm as Cx varies from

1pF to 40pF while Rx is 0.25x the size of the rest of the bridge resistors

w = 2*pi*100000;
Vs = 2*cos(w); %random voltage value for now

Rm = 10000; % estimated Rin of microcontroller, will probably be high
 % but the smaller the better
Ra = 2500; % the value given to us by the grad students
Rp = 2500;
Rt = 2500;
Rx = 625;

Ca = 16e-12; % in Farads, the e-12 means pico
Cp = 16e-12;
Ct = 16e-12;
Cx = 16e-12;

Xa = 1/(w*Ca);
Xp = 1/(w*Cp);
Xt = 1/(w*Ct);
Xx = 1/(w*Cx);

Za = Ra-1i*Xa; % we can define our imedances however we want right now,
Zp = Rp-1i*Xp; % so i just used a series res and cap

Zt = Rt-1i*Xt;
Zx = Rx-1i*Xx;

i2=[];
i3=[];
C = 1:1:40000; %define an array for our variable cap

for n = 1:1:40000

Xx1 = 1/(w*n*1e-15); %sweeps the capacitance from 1fF to 40pF
Zx1 = Rx-j*Xx1;

%Matrix solved by watson and i
impedance_matrix = [Zp+Za -Zp -Za; -Zp Zp+Rm+Zx1 -Rm; -Za -Rm

Za+Rm+Zt];
voltage_matrix = [Vs;0;0];
current_matrix = linsolve(impedance_matrix, voltage_matrix);

i2=[i2 current_matrix(2,1)];%stores the range of i2 values
i3=[i3 current_matrix(3,1)];%stores the range of i3 values

end

total_current = i2-i3;
voltage_Rm = total_current.*Rm;

figure
subplot(3,1,1);
plot(C,abs(total_current))%looking at magnitude of difference in

current
title('Cx varied from 1 to 40pF, Rx .25x rest of the resistors in

bridge');
xlabel('Capacitance in 10s of pF');
ylabel('Magnitude current across Rm in Amps');
grid on
subplot(3,1,2);
plot(C,angle(total_current)*180/pi,'red')%angle of difference in

current
xlabel('Capacitance in 10s of pF');
ylabel('Angle current across Rm in Degrees');
grid on
subplot(3,1,3);
plot(C,abs(total_current).*Rm,'k')%resistance across Rm
xlabel('Capacitance in 10s of pF');
ylabel('Magnitude voltage across Rm in Volts');
grid on

