
MicroCART 2013-
2014

May 14-10
Kevin Engel, Michael Johnson, Nate Ferris,

William Franey, Kelsey Moore, Lucas Mulkey,
and Aaron Peterson

Scope
Create on-quad sensor control system consisting of:

Hardware / Sensors:
● Bluetooth

○ basestation commands
● Inertial Measurement Unit (IMU)

○ pitch, roll
● Pseudo GPS

○ lat, lon, alt, yaw
Core Control Programs:
● Proportional, Integral, Derivative (PID)

controller
○ analyze current and target location
○ correct error

● Motor interfacing
○ Throttle,Pitch,Roll,Yaw to PWM translation

Design Process
Research: Datasheets, control theory concepts, code
examples

System Design: Developed block diagram detailing data
flow and component interaction.

Unit Programs: Created isolated programs dedicated to
specific functions (ex. Bluetooth communication, PID
controller).

Unit Testing: Tested individual modules for functionality,
feasibility and correctness (fix if necessary).

Program Integration: Integrated each unit module into
the complete system.

Integration Testing: Tested integrated system for
correctness, and that it meets all design requirements.

Research
● Ardupilot (MultiWii)

○ Motor mixing
○ IMU Filter, usage
○ GPS usage
○ PID controller
○ Commands

● NMEA 0183
○ GPS sentence protocol

● VRPN
○ IR camera data protocol

● Sensor Datasheets
○ properties

■ max speed, voltage, precision
○ pin outs
○ data protocol

● Other Quads (Hobbyist)
○ Manual flight tutorial
○ Forums, parts & batteries used
○ Recommended care/use
○ Frequent behavior
○ Troubleshooting

Old System

Original Design

Current System

Bluetooth
Task:

● Complete rip and replacement of the old
communication system.

● Flight logic, stability, to be ran onboard, rather
than on the base station computer.

Approach:
● Test programs to collect data and transfer

offboard
● Begin by using all component of the old system

(cameras, etc.) EXCEPT, instead of the PPM and
receiver, use the bluetooth modules and the
servos to output PWM directly to the motors.

● Once successful, we began to remove other
remnants of the old system over (Camera system
orientation data).

Bluetooth
Complications:

● Unreliable Data Transfers
○ Broken Packets
○ One broken packet can cause the whole

system to act unpredictably, completely
breaking our flow, and eventually
compounding errors.

Solution:
● Find the best baud rate and frequency to

maximize speed and minimize transmission
errors.

● Start byte for flow control
● Implement Cyclic Redundancy Checks (CRC)

to ensure data packet integrity on both sides.

Bluetooth

Results:
● Bluetooth communication has been largely

successful beyond the unexplained limitations of
our hardware (unable to reliably transmit at the
highest speeds).

● Camera position and orientation information can be
communicated to the FPGA on-board the vehicle to
be used in the PID and adjust the signals going to
the motors.

Inertial Measurement Unit (IMU)
Observation:

● In initial tests, quad is not stable using
exclusively data from the camera sent over
bluetooth

● Hypothesis: The delay between packets is too
great for roll and pitch estimations to keep the
quad stable

Task:
● Move calculation of roll and pitch onboard using

the IMU. This should allow the quad to be
stable without bluetooth packets.

IMU
Approach:

● Implement a simple, lightweight filter to combine accelerometer and
gyroscope data and estimate roll and pitch onboard

● These roll/pitch estimations can be updated ~100 times per second,
while simultaneously accepting lat/lng/altitude values from the camera
system 4 times/sec (pseudo-GPS)

Complications:

● Conductive bottom; shorts board
● Board will not accept threading

Solutions:
● PID constants will need to be retuned, the i term will likely be

eliminated for the duration of testing
● Non-blocking read to get camera data, not ideal
● Estimate distance travelled between updates

Kalman Filter

Tasks:
● Get the most accurate approximation of pitch and

roll from IMU possible
● Gyroscopes and accelerometers inherently

have their own shortcomings.

Approach:
● Write code in Matlab and test by comparing data

from our imu sensors with data from the high-speed
camera system

● Translate code into C for on-board calculating
Complications

● Kalman filter seemed too heavy for the scope of our
project

Kalman Filter vs IR Camera

IMU-Lightweight filter

● Based on Kalman filter
● Calculate orientation of quad from two separate sources

PID Controller
● Task: Quad needs a way to control its movements in flight with minimal

data from the Base Station
○ Current orientation and location used to move to new location or stay in place
○ Error calculation based on current and target location
○ Motor correction changed based on error

● Approach: Created new onboard PID controller
○ Nested PID controller - (position (orientation))
○ IMU data integration
○ Lesser camera data for outer loop

● Complications: Timing and Sign errors
○ The timing for the pseudo-GPS was 5 times slower than the data we would receive from

the IMU
○ Tuning with new weight and no assistance proved to be very difficult

PID Controller (nested)
Latitude with Pitch
Longitude with Roll

Motor Signal-Mixer
● Replaces the GU344
● Adjusts PWM for each motor
● Output based on 0% to 100%

○ Throttle - 0%
○ Pitch, roll, yaw - 50%

● Throttle ±(Pitch-50)±(Roll-50)±(Yaw-50)
● Flight controller is either added or

subtracted

User Interface
Task: Write a UI to support our new system’
s components. Ensure the capability of
automatic and manual control is preserved
through the new protocols.

Approach: Take the UI skeleton from last
year’s code but convert each class to tailor to
our system.

Complications:
● Modularity.
● Concurrency

Results: A UI with the look and feel of the
old system, but with the internals of the new
system.

GPS - hardware

● Seeed’s GPSbee
● U-Center

○ baud rate
○ update rate
○ output messages

GPS - software
● NMEA 0183

○ National Marine Electronics Association
○ communication protocol
○ example:

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,
x.x,M,x.x,xxxx<cr><lf>
● C code:

○ GGA - lat, lon, quality, alt
○ locate start, tokenize, parse

Other Technical Challenges
● Bad Motors

○ years of use
○ overall durable yet constant flight tests led to shortened life

● Old, custom PCB Board
○ relatively slow processor
○ problems with BT communication, sensor processing
○ insufficient number of standard port hookups causes messy wiring
○ Inability to implement threading

● Quadcopter Frame
○ forces board to be placed offset from center of mass, same with batteries
○ Plastic “snaps” apart frame occasionally
○ Foam bumpers alter quad model, PID constants

Questions?

Kalman Filter Conversion
● Task:

○ take current matlab code file(s) and convert them into a C file suitable for running
● Approach:

○ added math.h in order to be able to run sine, cosine, atan2 etc. From there continue
syntactical math calculations, create functions

● Complications:
○ Matlab is considered a “calculator” -- faced difficulties in terms of math calculations
○ Simple matrix algebra became complicated, able to overcome this by adding an additional

matrix_util
● Results:

○ created Add, Subtract, Multiply, Transpose, and Inverse functions for the matrix aimed file.
Code was written for “All” matrix sizes, however we only used 4x4 and 4x1. Compiles and
runs perfectly.

C Kalman vs Matlab Kalman

Kalman Filter
Complications:

● Complexity of the Kalman filter led to difficulty
in debugging

● Uncertain if we can trust our “true” Camera values
● Filter seemed to heavy

Solution:
● Strong technical communication with advisors

and CprE’s
● Light-weight filter

GPS - task
Task:

● Obtain current x,y,z position of quad through GPS

Approach:
● research and compare GPS hardware specs
● research message protocol
● configure hardware using associated software tool
● create C code to parse messages and pick out essential information

Complications:
● Non-volatile memory was unable to be configured using software tool.
● Not always locked - code should handle this case
● Inaccurate - drifting location
● Imprecise - differential vs non-differential fix

GPS - hardware

● Seeed’s GPSbee
○ 4Hz update
○ Regular Fix

■ meters
● U-Center

○ baud rate
○ update rate
○ output messages

GPS - hardware
● Digilent’s PmodGPS

○ 10Hz update
○ Differential Fix

■ centimeters
● MiniGPS

○ baud rate
○ update rate
○ output messages

PID Constants
Task:

● Attachment of the labet board, legs, and bumpers to the quad changed its center of mass and
our PID controller no longer functions properly

● Get accurate initial PID constants that we can tune our PID controller with

Procedure:
● Create CAD models of the additional quad components
● Import the components into Matlab SimMechanics and attach them to an existing CAD model of

the quad
● Setup the simulation environment to obtain rudimentary PID constants

Complications:
● Limited knowledge of both SolidWorks and SimMechanics made the CAD import very tricky

○ Complexity of the quad made a SimMechanics assembly unfeasible
○ CAD assemblies failed to import some components

