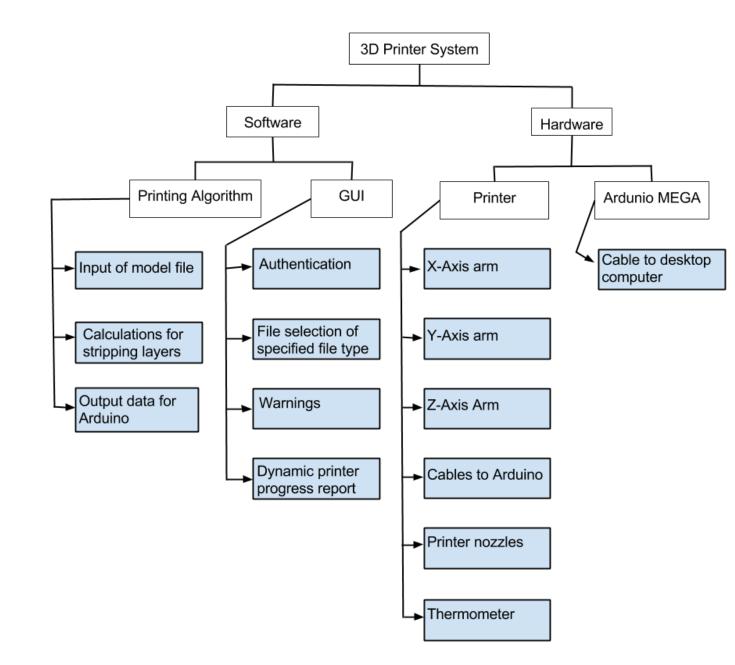
Team MAY14-07 3D Printer – Software

Piriya Hall Arielle Czalbowski Wanting Zhao Albert Kurniawan

Scope

- Main idea: Build software for a 3D printer
 - User inputs model file (.STL)
 - Printer prints plastic model
- User should be able to print any .STL file
- Printer should be able to communicate with hardware to move arms to print specified file.
- User should be able to easily utilize GUI to communicate with printer

Primary Functional Requirements

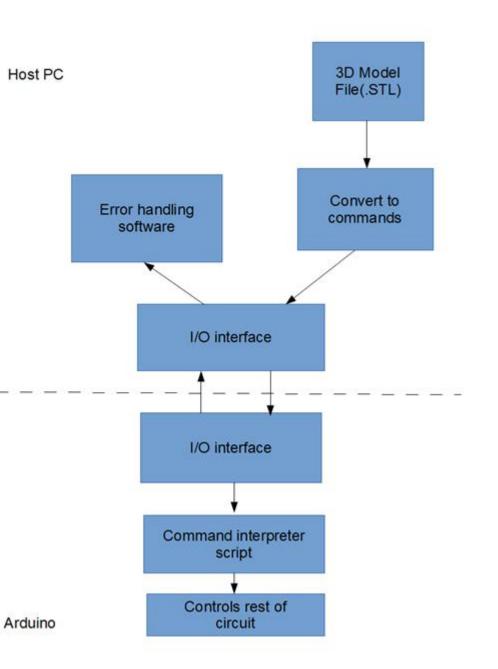

- Product shall take .STL model file as input and output 3D model
- Product shall send information of printer head to Arduino MEGA via USB
- Product shall not allow user to manually move printer via commands
- Product shall only print when heat plate is hot enough for print job to be successful and without significant error

Primary Nonfunctional Requirements

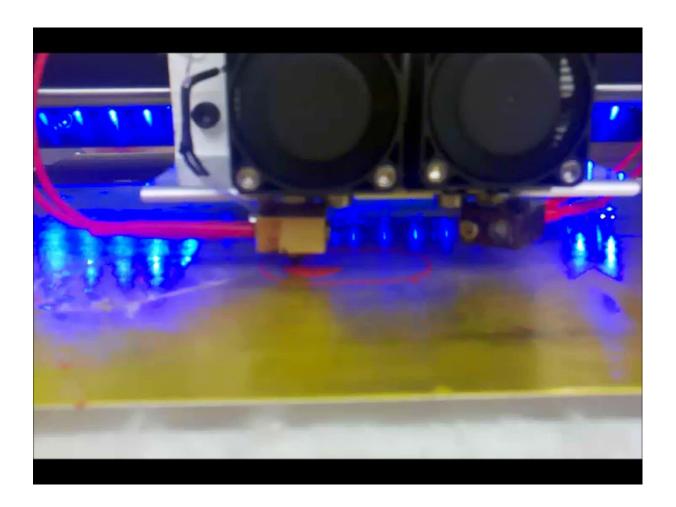
- The product shall not allow a model file over 1 GB
- The product shall always clearly warn users of the safety concerns of utilizing the 3D printer
- The product shall only allow Iowa State University students and faculty to access to printing
- The product shall require the user to enter contact information before being allowed to utilize the 3D printer

Design

- Hardware and software taken into account
- Firmware design
 - Calculations
 - Adjustment with hardware
 - Heat regulation
 - Coded in C++
- Calibration Program
- GUI design
 - Error checking
 - Information collecting
 - Dynamic report
 - C#



Demo – GUI



Design

- Host PC uses .STL file
- Converts to commands
- Sends through interface
- Arduino interprets script
- Gives script to printer to print

Demo – Printer

Design

- Reached current design:
 - Examining hardware limitations
 - Determining best possible software
 - Meticulous formation of requirements
- Progress
 - GUI completed
 - Configuration for firmware is complete
 - Majority of slicer completed

Alternative Designs

• GUI

- C++
 - Not intuitive for making GUI
- Firmware
 - SPrinter
 - Didn't control arms correctly
 - Marlin
 - Didn't control heat plate
 - Versions of Repetier
 - Combination of above across various versions

Testing

- Calibration program
 - Run small number of times
- Back-end program
 - Test if we can communicate with Arduino
 - Test with GUI
- GUI
 - Look through requirements
 - Have users utilize and try to break

Testing Results

- Calibration program successful
- Back-end COM port opened and connection established
- Repetier works as expected
- GUI has trouble communicating with COM port but is otherwise successful (strict error checking)
- GUI successful; known errors are account for, Client expressed satisfaction
- Produced desired result overall

Challenges & Solutions

- Challenge: Finding a programming language that would allow for both tight communication and ease of programming and debugging.
- Solution: Between C++ and C#, found C# to fulfill most needs the easiest
- Challenge: Finding correct firmware for use with the printer
- Solution: Explored viable solutions and weighed their pros and cons until we decided on Repetier.

Challenges & Solutions

- Challenge: Opening up the COM port for communication with the Arduino for data
- Solution: Exploring options and attempting to follow similar problems people have had in the past with regards to communication
- Challenge: Firmware changed between teams fairly frequently.
- Solution: Kept up with firmware that was decided upon and did rapid research to understand and utilize it.

Scenario Examination

- Thorough examination of requirements
 - Use of VOLERE process
 - Frequent discussion with client
- Thorough testing
 - Based on requirements
 - Based on past experience of code
- Many different options explored
 - Different languages, standards, etc.

Questions

Standards

- ANSI ISO 10005 / 10006 / 1007 (Quality Management Standards)
- Underwriters Laboratories Standards
 - Standard 2785 (Printing cartridges)
 - Standard 796 (Printed-wiring boards)
 - Standard 746F (Polymeric materials)

Decisions

- Calibration program runs pre-set number of times makes it easy to calibrate printer
- GUI simplifies for user and helps with security
- Live output easy for users to see status and be aware of any errors
- RepRap lots of pre-existing tools for printer

Project Schedule

- Fall 2013 Setting up printer, solving problems, taking care of errors; calibration program
- January 2014 Work through firmware; use C++ for GUI
- February 2014 Working through firmware; switched to C#
- March 2014 Finalized firmware
- April 2014 Finished the GUI and back-end components

Project Costs

- Not much due to software not costing money
 - License for Visual Studio (paid for by University)
 - Team May 14-06 utilized our budget for the 3D printer hardware