
CyRIS (May 14-04)
Design Document

Team Members:

Nathan Clague
Michael Krantz

Zachary Patzwald
Maxwell Philips

Jake Roman
Micah Stevenson

David Vriezen

Advisors:

Dr. Manimaran Govindarasu
Brock Ascher

Page 1 of 14

I. Table of Contents

I. Table of Contents
II. High Level Architecture Diagram
III. User Interface Design Layout

UI Flow Diagram
Content Manager Mockup
Feeds Application Mockup
Campus Map Application Mockup
CyRide Map Application Mockup
Staff Directory Application Mockup
Camera Application Mockup

IV. Module Architecture Diagrams
Content Manager
Feeds
Campus Map
CyRide Map
Staff Directory
Camera Application

V. System Integration
Test Cases

Content Manager Test Cases
Feeds Test Cases
Campus Map Test Cases
CyRide Map Test Cases
Staff Directory Test Cases
Camera Application Test Cases

User-Level Tests
Performance Tests
Security Tests

Page 2 of 14

II. High Level Architecture Diagram

The three main abstraction layers in our project are the existing Intuiface presentation
(which will be extended to include our feeds application), the Java layer containing code written
using the MT4J framework, and the web service layer providing communication with various
endpoints so we can pull external data into our project.

Intuiface’s native Interface Asset element will be utilized to display web data pulled from
specific ISU-related feeds.

Our Java layer will contain frontend code supporting multi touch gestures that will allow
users to interact with our applications in a meaningful way.

The web services we leverage will return staff directory information or NextBus XML for
injection into our project.

Page 3 of 14

III. User Interface Design Layout

User interface design is a large aspect of this project as we want our applications to be
visually appealing in order to draw users in. The following diagrams show the proposed UI flow
in addition to mock up views of our applications.

UI Flow Diagram

Here, blue boxes represent UI views and the arrows between them represent actions a
user may take to move between the various areas of our project.

Page 4 of 14

Content Manager Mockup

The content manager will
have a scrollable list of
application icons. When a user
selects an application, the content
manager will spawn an interactive
window containing the
application. The window can be
resized, rotated, and dragged
across the screen.

Feeds Application Mockup

The blue spaces will crawl
across the bottom of the screen,
informing users about current
events relating to the university
and ECpE department. Users
can expand items they want to
know more about to get further
details.

Page 5 of 14

Campus Map Application Mockup

The campus map
application will be realized via the
Google Maps API. As such, native
Google Maps controls will be
present along with expandable
map waypoints our team will
embed into the map. Note that
CyRide information does not
appear by default, and must be
added to the map by clicking the
CyRide button.

CyRide Map Application Mockup

Once a user switches the
map to CyRide mode, he or she
can add bus routes to the display
and expand time point stops to see
when the next bus will arrive. Not
every stop is a time point, those
that are and are not have already
been defined by NextBus.
Additionally, a user can input a
start and end point and ask the
map which bus route will get them
there the fastest.

Page 6 of 14

Staff Directory Application Mockup

The staff directory
application will be built as a
baseline with room for expansion.
It is launchable from the home screen or from the maps when a user selects a building. The ultimate goal would be for our directory application to be able to display data from every department’s directory.

Camera Application
Mockup

The camera application is
actually a combination of many
different camera novelties. It will
display a live feed to the user (using a webcam or a camera already installed somewhere in Coover) and give the user options to transform the footage.

Page 7 of 14

IV. Module Architecture Diagrams

Content Manager

In the Content Manager Application, other programs will be launched at the touch of an
icon in a scroll bar. The main requirement for this part of the project is to make it feel like a
seamless integration between Intuiface and our application. The feel of the scroll bar as well as
all of the gestures on the content manager need to match the Intuiface structure. MT4J handles
the CPU allocation of scenes so that there can be multiple primary applications running at one
time.

Feeds

The Social Feeds App will use data from web services. In Composer, the administrator
will specify the feed info to retrieve, which will be retrieved by the Interface Asset via GET
requests. The Data Template specifies the default visual representation of the data. Most of
the complexity will hide in a custom web service we create, which will retrieve OAuth access
tokens for each individual web service, handle rate limits, include necessary headers for
requests, query individual web services according to specification, as well as combine, sort, and
return results all from one single call from the Interface Asset.

Page 8 of 14

Campus Map

In the Campus Map application, we have code running the Map through JAVA. Inside
this code, we include the OpenStreetMap API, which is used to include mapping capabilities of
the campus and surrounding areas. From there, we can edit the maps, the data in the maps,
tags and other changes. A few classes used in the project include JMapViewer (mainly used to
view the map on the display), JMapObjects (used for implementing the various objects we want
to set with info about the buildings on campus), and MapMaker interface (used to actually make
the maps of various places on campus).

Campus Map also integrates with the CyRide application. As the CyRide app pulls in
GPS data of various bus routes, these points are added into the map.

CyRide Map

The CyRide app contains a module that will periodically poll the NextBus API. When this
module finds new information, the CyRide app removes old information from Campus Map and
adds the new information to Campus Map.

The CyRide app also contains a module that is responsible for finding a route (using
the CyRide bus system) between 2 points in the city of Ames. This module then adds this route
information to Campus Map and may display additional details to the user. After a timeout
period, this route information is removed.

Staff Directory

Page 9 of 14

In the Staff Directory Application, we will periodically parse and save data from the Iowa
State University engineering staff directory into a local database. To do this we will be utilizing
the java library JSoup. The database will be emptied and repopulated with each call. This data
will then be displayed in a java application interfaced with the content manager. This application
will display the staff directory in a similar manner to that of the online version, just without having
to scroll through pages of information, and without giving the user internet access.

Camera Application

In the Camera application, we will use a stream video from a camera, using the mt4j-
gstreamer-extension package. Will will attempt to first process the video using JavaCV
or another video manipulation library, but it’s possible that the heavy computational costs
associated with encoding and decoding high resolution videos will make that infeasible.

V. System Integration

Page 10 of 14

Test Cases

Content Manager Test Cases
T1: Application launching and exiting test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: The content manager should allow the user to navigate easily throughout our
applications. We can assert this behavior by giving a test user a defined set of actions to
perform and comparing the actual state of the system with the state we expect it should have.

T2: Simultaneous application test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: The content manager should be able to spawn a high number of child applications
to accommodate periods of intense use. We can manually test this behavior by spawning
multiple applications and observing the behavior of the system, checking for continued
responsiveness and minimal input lag.

Feeds Test Cases
T1: Displaying feed item test

Primary Users: N/A (this test does not require a specific user)

Description: Our feed should be able to display relevant information during periods of high
output and low output. We can test this by setting it to listen to a team-controlled Twitter
account and mimicking periods of high activity and periods of low activity. We will then monitor
what our feed displays and adjust our algorithms accordingly.

T2: Expanding feed item test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: Feed items of interest should be expandable by users who wish to learn more.
This includes viewing image or other links present in the feed item. We will test to make sure
users can obtain a satisfactory amount of extra information when they desire it.

Campus Map Test Cases
T1: Navigation test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Page 11 of 14

Description: When using the Campus Map Application, the primary user should be able to
navigate throughout the map of the campus without any trouble or issues. The main point
we are determining from this test case is how well the map can be navigated through, and
determine if there are bugs that need to be fixed from use.

T2: Sub-menu functionality test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: When inside the main map application, user has the ability of selecting a building
on campus to bring us a sub-menu of options for that building. This options will include the
building layout, classroom schedules, and building resources. This test will help determine how
useful the sub-menus of each building is and if ordinary users can use these with ease.

CyRide Map Test Cases
T1: NextBus test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: Users should be able to expand timepoint stops on the map to see when the next
bus will arrive. We can check the information seen in our application against the information
displayed by the NextBus webpage on the CyRide website and make sure that it is the same.

T2: Route finding test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: The CyRide map should be able to inform users of the best bus route to take from
a given point A to a given point B. We can test this by turning off all routes and enabling two at
a time. This will make it clear for us as testers to see which route would be better for a user to
take. We can compare the results given by our CyRide map with the results we expected.

Staff Directory Test Cases
T1: Correct information test

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: The staff directory should display the data present on the online staff directory.
When a user browses the staff directory, we can compare the displayed information against the
information found online and check for discrepancies.

T2: Updated information test

Page 12 of 14

Primary Users: Volunteers and passer-bys willing to test out the CyRIS system application

Description: When the online staff directory is updated, our staff directory application must
reflect those changes. We can test this by creating a temporary REST endpoint broadcasting
data that our team can change. We can set our staff directory to listen to this endpoint and
make changes to the data, checking to see if they are picked up by our directory.

Camera Application Test Cases
We will not define specific test cases for the camera application at this time. This is because
most functionalities we are considering simply display a feed back to the user with various
transforms. Such a feature either works or doesn’t, leading to marginal test cases at best.

User-Level Tests
Once we have developed a stable interface that will include applications for the CyRIS

display, we will start a testing program. We will send out an email to current ISU students and
staff that will used as a request to test our system. We will also ask random passer-bys that
are already by the CyRIS display if they have time to help in testing our system. Our tests will
be volunteer based and we will have the volunteer users go through each of the test cases and
results will be recorded for future improvements.

Performance Tests
During the testing of the project, performance is a high priority. The real-time

measurement of the system will be important to note. When a user is using the system and it
becomes slow or loading times are not quick enough, the user will have a negative view on
the project and not give the system a good review when conversing with their peers. Having a
system that has minimum lag and loading times will make the interface much more user friendly
and enjoyable.

There are several different tests to be used to determine the performance will of the
system. The first stage of testing will be testing the speed of the system while running one
application at a time. This will involve testing each of the five primary applications on its own.
This will give us the performance of each application. The next stage is opening multiple
applications at one time. We can then compare the speed and performance when multiple
applications are opened and being used simultaneously. The final stage will be to try to overload
the interface with applications, by opening multiple instances all the applications at once and
determine when the system will fail to operate smoothly. When we determine the maximum
number of applications that can be opened without hindering the performance of the system, we
will limit the interface to this maximum number of instances at one time.

Security Tests

Page 13 of 14

Testing on any system that is openly available to the public needs to go through some
serious security testing. Security testing will be focused primarily on authorization, integrity, and
availability (checked in the performance tests). In order for our product to become accessible on
the touch wall we will need to make sure that all of these criteria have been tested.

The testing scheme for authorization will consist of users trying to use hotkeys while
in programs, trying to access menus that are not available, and trying to leave the intuiface
program. All of these must not happen while working with the test platform in order to move the
program to the touchwall.

Integrity of the system will be tested by our different programs by running extensive tests
to make sure that we are outputting true data. Since most of the data that we will be receiving
is easily accessible on the web knowing that we are outputting truthful can be checked against
current data.

Page 14 of 14

