Team 23 Design Document

Customer Loyalty Program for
Small Businesses

Clients - Jay Namboor
Adviser - Dr. Govindarasu

Members:
Christopher Waters
Van Nguyen
William Tran

1 | Loyalty Program

Contents

System Functional Requirements

System Non-Functional Requirements

Functional Decomposition

System Analysis

Input/Output Module Specification w/ Unit Testing
User interface specification

Software Specification

System Test Plan

2 | Loyalty Program

o o1k~ W w

23
31
31

System Requirements

Functional Requirements

FR-1 The system shall allow the user to login and logout.

FR-2 The system shall allow the user to create an account

FR-3 The system shall allow merchants to create loyalty cards

FR-4 The system shall allow merchants to expire existing loyalty cards

FR-5 The system shall allow merchants to verify customer punches

FR-6 The system shall allow merchants to verify customer rewards

FR-7 The system shall allow customers to search for local businesses

FR-8 The system shall allow customers to select loyalty cards

FR-9 The system shall allow customers to download loyalty cards

FR-10 The system shall allow customers to redeem punches

FR-11 The system shall allow customers to redeem rewards

FR-12 The system shall allow the database to store a history of completed punch
cards

FR-13 The system shall allow the merchant to view card history for their business

The system shall allow the customer to view personal card history for
completed rewards

Non-functional requirements

NFR-1 The system shall be developed using the Appcelerator SDK

NFR-2 The system shall use an encrypted SQLite database for local storage to
prevent other applications from interacting with a user’s card data

NFR-3 The system shall utilize hashing for punch a reward verification

3 | Loyalty Program

Functional Decomposition

Figure 1 - Above shows the client and server sides interact.

4 | Loyalty Program

System Analysis

While our system is mainly a client-server architecture, it is however, somewhat unique
in that both the server and client side will house some of its own data. The reason for
this is to provide some offline functionality. The offline functionality is needed when the
user is “punching” the card. If we were to depend on an internet connection, that may
slow the checkout process for the customer and the merchant. We do not want the
application to cause the business to lose customers because it is trying to connect to
the internet.

That is why cards can be downloaded on to the client locally. The client itself will be
responsible for keeping track of the punch cards. It will handle everything from punching
the card to redeeming the reward.

Because of the offline capability, we proposed a cloud synchronization solution. If the
user were to ever lose their phone, they would not lose all of their punch cards. The
Card sync module will interact with the History Manager on the server side to ensure
data on both the client and the server are up to date.

Server Side
Encryption/ [Account |
Verification
Business % Card
\—enader SEEERES J

Figure 2 - Notice how every module within the same layer can interact with one another.
Same goes for the client layer. For example if Business Manager needs to get the card
that is owned by it, it can call on the card manager to get that card from the database.

The responsibilities of the server include storing all of the user and the businesses. The
way each module is setup is based on their specific responsibilities. For example if a
user wants to download a card, it will eventually have to go through the card manager to
get that card. For more information on a module, please refer to the input/output
specifications.

Interaction between client and server Side

5 | Loyalty Program

Ajax JSON
object

Figure 3 - Shows interaction between server and client

Interactions between client and server will done through JSON.In the example above, a
user is logging in. The account module on the client side will ajax a GET request with an
JSON param object { action : <method>, object : <data>} to the Account Manager on
the server side. The action tells which method to call from the controller, and the data in
this case is an Account Object with a user name and password. The Account Manager
will parse out the Account object and verify if it exists in the database. If it does, the
Account Manager will return an Account Object with a id > 1 and -1 otherwise. All
communication with the server will be done in a similar fashion.

Software Design Patterns

1. Model-view—presenter
We are using the model-view-presenter design pattern in order to separate logic from
the view from the model. A picture below describes the mvp structure.

6 | Loyalty Program

User

Update

Pass call

(Control

Model

Fire events

_____-_-_._._._._..--'"

Figure 4 - Shows the MVP pattern (Source :
http://dotnetslackers.com/articles/silverlight/A-W as pKiller-Game-with-Silverlight-3-NET-RI
A-Services-MVP-and-MVVM-Patterns-Part-1.aspx)

In this case, the view is all of our UL. Whenever their Ul needs to update/request
information, they will need to call a specific controller(presenter) assigned for handling
certain jobs. That controller will then update/retrieve the data and do any logic/format
changes to the data before it is passed back to the View. The Model ‘s only job is to
update/retrieve data. The Views job is only to display data. The controller will handle all
the logic. Once again because of the client-server architecture along with the offline
capability, we almost have two-part controllers in this case. Think about this, when the
user attempts to create an account, the GUI will need to interact with the account
controller on the client side. The account controller on the client side will then quickly do
input checking ...etc , before sending the data to the Account manager controller on the
server side to store and verify the account has been created.

7 | Loyalty Program

Input/Output Module Specification

Server Side

Each input for the modules shall be wrapped around a JSON Object and converted to a
string before it is sent over to a server in this format.

JSON Object - Which contains the data .
For example account object would have
object = { username : <value> , password <value> }

Which is then wrapped around another object to be sent over with another action
attribute.

The action key specifies which function to call within the controller.

param = { action : <value> , object <data object> }

and finally this is passed to a ajax call by { param : Stringify(param) }
Example : A call to the Account Manager Controller for a login

var account = { username : "hello" , password : "goodbye"};

var param = { action : 'Login’, object : account };

$.ajax({
type: ‘GET’,
url ; 'http://llocalhost:81/loyaltyprogram/AccountManager.php’,
data : { param : JSON.stringify(param)},
success : function (data){

alert(data);

}
»;

Card Manager
The card manager module will handle creation of cards and also retrieving cards.

Module Function Input Output

Store created loyalty card Title/Description/Number of | Verification that loyalty

onto the server punches/Level/Expiration card is created and added
Date/Place ID it to the server

8 | Loyalty Program

Retrieving loyalty cards

Place ID

List of loyalty cards

User(merchant) Create
loyalty cards for their
business

Loyalty card does not
already exist for specific
business in the database.

from server information that match with
the Place ID

Loyalty card already
existed in the database

User(Customer) Selected
loyalty card from specific
business

Loyalty card is not expired
and it placelD match with
specific

Loyalty card exists or
placelD does not match
with specific business ID.

Account Manager

The account manager will contain code to create, lookup accounts, & reset passwords.
When creating an account, users will input an email and password combination. If a user
already has an account, they can login by submitting their email and password

combination.

Module Function

Input

Output

User login

Email/Password

Verification that a user is
logged in (Session?)

User creates account

Email/Password

Stores account in
database and notifies
user.

User resets password

Reset password

Password is reset and sent
to user’s username

Test Case

User creates account.

email does not already
exist in the database.

email already exists in the
database

User login

email and password
combination exists in the
user database

email and password
combination does not exist
in the user

User resets password

user password resets

9 | Loyalty Program

History Manager

The History Manager will be responsible for maintaining a history of cards that have
been downloaded to a user’s phone. When the card is redeemed, the database entry
corresponding to that card will be marked as completed. It will also be able to sync up
with a user’s phone to keep track of partially complete cards so a user can download
their cards in case they lose access to their phone (e.g. phone breaks and they get a
replacement phone or they upgrade phones).

Module Function Input Output
Add Card Card Object Confirmation Card was
Added
Update Card Card Object Confirmation Card was
Updated
Retrieve Card Account Object (id) Uncompleted Cards
View History Search Criteria Cards Matching Search
ID Criteria
Search by Date Creation
Search by last punch
Search by Business id

Add Card Card is added to Database Card is not added to Database
Update Card Card is updated in Database Card is not updated in Database
Retrieve Card Uncompleted cards are Uncompleted cards are not
downloaded to a user’s phone downloaded to a user’s phone
View History User receives a list of cards User does not receive a list of
matching search criteria cards matching search criteria

Business Manager

The business manager module will handle creating and linking up business to users. It
will also handle request for anything information involving businesses.

This module must :

1. Create a business and link up to user account

2. Link up other accounts to business

3. Retrieve businesses of a user

4. Search request for business based on name

10 | Loyalty Program

5. Search for businesses based on location

Module Function Input Output
Create a business and link UserlD/Place Verification that business
up to user account, and Name/Location is created and linked up to

generate grcode and hash
to business and email gr
code to user.

an account with grcode
created.

(Business JSON with id)
-1 -business already exists

Save an edited business

Business info

Verification that business
information has changed

Link up other accounts to
business

UserlDs/Place/BusinessID

Verification that the
business is linked up to
those accounts

Retrieve businesses of a UserlD List of business

user information linked up to the
UserlD

Search request for Place name List of businesses

business based on name matching with place name
with locations.

Search request for GPS location List of businesses near

business based on GPS location.

location

User(Merchant) Creates a
business

Business must be
validated before it is
created. User will be linked
up to business Qrcode is
generated and emailed to
user.

Business creation request
is declined.

Merchant edits and saves
a business

Business information must
changed

Business creation request
is declined.

User(Merchant) Links up
other users to help
manage business.

User has the role(linked to
business already) to
manage the business.

User does not have the
role(linked to business
already) to manage the
business.

User(Merchant) retrieves

User is linked to any

User is not linked to any

11 | Loyalty Program

his/her businesses to
manage.

businesses.

businesses.

User Search request for
business based on name

Business matches that
name with in the database.

Business does not match
the name with in the
database.

User searches for
business based on a
his/her location.

There are businesses
within a range of that
location

There does not exists not
any businesses with a
range of that location.

Encryption/Verification

This module is responsible for hashing (sha-256) of input from the user such as
passwords. It will also have the responsibility of generating a QR code (with
http://phpgrcode.sourceforge.net/) for a specific card for a merchant to do punches.

Module Function

Input

Output

Hash a user password

User password

Hashed (password)

Generate a QR code

Merchant Name +
Merchant ID

QR code of hashed
Merchant Name +
Merchant ID

(salt) = merchantld + name
+id

Test Case

User password input

Password is hashed

none

Generate QR code

QR code is generated from
hashed(Merchant
Name+Merchant Id)

none

Database

12 | Loyalty Program

j users
id INT(11)
> email YARCHAR(255)

» password VARCHAR(255)

H
metadata V ARCHAR(255)

" | businesses
business_id INT(11)

#owner INT(11)
meta_data TEXT
grcode BLOB

>

#business_nam e VARCHAR(255)

groode_hash VARCHAR({255)

>

_| managers v
manaager_id INT({11)

manager_user INT({11)

“# manager_business INT{11)

| cards

card_id INT{11)
@ business INT(11)
» metadata TEXT

| history v
history_id INT(11)

@ user INT(11)

#time_stamp DATETIME

@ card INT(11)

#punches INT(11)

card_states INT(11)

#|ast_time DATETIME

QRcode_hash Y ARCHAR{255)

*Each Database will have a corresponding object relating to it.

Business_meta_data JSON

business metadata

address
lelat
ldon

address- address of the business
lat - latitude location of the business
lon - longitude location of the business

Card_meta_data JSSON

13 | Loyalty Program

-

card meta_data

termplate_ikd
place_id

fetitie
description {reward)
max_punches
leval
venmiicaton
expiration date

title - title of the card

level - level of the card

Client Side

Account

template_id - the id of the downloaded card
place id - the id of the card’s business

description - description of the reward
max_punches - max number of punches needed to redeem a reward

verification - the verification code for this card
expiration Date - the expiration date of this card

The account module will be responsible for the login/logout process of the user. It will
also handle the creation of accounts.

1. Login
2. Logout
3. Create Accounts

Module Function

Input

Output

User login username and password Verification if user is
successful or not, and
open a session to the user

User logout user clicks logout logs user out by closing a

session to the user

Create accounts

email, password, and
confirm password

send information to server
side to create an account

Test Case

User log into the system

username and password
match with username and

mismatching username
and password

14 | Loyalty Program

password on the server

User logout of the system the system close user user session still run
session

Create new account email and password email and password exist
doesn’t exist on the server on the server

15 | Loyalty Program

Loyalty Card

This module will be use when the customer downloads a selected loyalty card. Once the
download card is complete, it will be store onto the phone database. The module will
then be required to handle punches of the a card. It will also mark the card is completed

when punches have been filled.

Cards have have only have one of four states

1. Not completed -0
2. Completed -1

3. Redeemed -2

4. Expired-3

Module Function

Input

Output

Download Loyalty Card

Card Template ID

Download the new loyalty
card and store it the phone

Punches card

QR code and timestamp of
last punch.

Loyalty point to the card
and update the phone
database if QR code
matches.

Last punch of card

QR code,

Update history module and
and mark card as
completed in database.

Get current loyalty cards

Selected loyalty card

Gets a list of current
loyalty cards.

Get completed loyalty
cards

Selected completed loyalty
card

Gets a completed list of
loyalty cards.

Test Case

QR code verification

hashed value of QR code
matches the one in the
database with the specified
card id.

hashed value of QR code
doesn’t match the one in
the database.

16 | Loyalty Program

Reward Verification
This module is responsible for the verification of a punch. When the user scans a QR
code, this module check the QR code’s value against the one in the database.

Module Function Input Output

Scan and Verify QR code Card id, hashed value from Success or fail
QR code

Test Case

Scan QR code verification hashed value of QR code hashed value of QR code
matches the one in the doesn’t match the one in
database with the specified the database.
card id.

17 | Loyalty Program

Business

The business module will mainly interact with the business manager module on the
server side to get requested information based on a search criteria.

Module Function

Input

Output

Create a business

UserlD, Place name, and
location

Verification that business
is created and linked up to
an account

User(merchant) creates a
business

Business must be
validated before it is
created. User will be linked
up to business

Retrieve businesses of a UserID List of business

user information linked up to the
UserlD

Search request for Place name List of businesses

business matching with place name
with locations

Business creation request
is declined

User(merchant) links up
other users to help
manage businesses

User has the role to
manage the business

User does not have the
rule to manage the
business

User(merchant) retrieves
his/her businesses to
manage

User is linked to any
businesses

User is not linked to any
businesses

User search request for
business based on name

Business matched that
name within the database

Business does not match
the name within the
database

18 | Loyalty Program

History

The history module will interact with the history manager on the server to add and
update cards stored in the server’s database, download non-completed cards, and view
a user’s history.

Module Function Input Output

Add Card Card Object Confirmation Card was
Added

Update Card Card Object Confirmation Card was
Updated

Retrieve Card <none> Uncompleted Cards

View History Search Criteria Cards Matching Search
Criteria

Add Card Card is added to Database Card is not added to Database
Update Card Card is updated in Database Card is not updated in Database
Retrieve Card | Uncompleted cards are Uncompleted cards are not
downloaded to a user’s phone downloaded to a user’s phone
View History User receives a list of cards User does not receive a list of
matching search criteria cards matching search criteria

19 | Loyalty Program

Client Database

The client database will consist of :

loyaltycard
e timestamp (text)
ecard_meta_data ([text)
punches (integer)
elast_punched (text)
ecand_state (integer)

loyalty card table
e time_stamp - When the card was downloaded
card_meta_data - refer below
punches - Number of punches a card (Default of 0)
last_punched - timestamp of last punch
card_state
0 - not complete
1 - completed
2 - reward redeemed
3 - expired

card_meta_data will be a string version of this JSON object - explained in server
database part

20 | Loyalty Program

Card Sync

This module shall be responsible for keeping the data on the phone and the server up
to date. That way, if the user were to switch to a new phone, the application should
automatically download the information they had when using the old phone to their new
phone. To accomplish this the module must:

1. Keep server up to date with local information.
2. It must also handle updating even if there is no connection to the internet.

3. Check at login to see if local information matches with server. (i.e. check number of
current cards and number of completed cards match). If it doesn’t match, it must
download information from the server.

4. Must update when:

When they complete a card.

When they punch a card.

When they redeem a reward.

When they login.
When they log out.

-If not internet request to them to save info
When they close the program.
When they download a card.

Module Function

Input

Output

Update server with local
information

User ID, # of punches,
Timestamp of Last
Punch(YYYY:MM:DD
hh:mm:ss) and, reward
claimed (True/False)

Send request to history
manager with punch card
transaction information

Update even without
internet connection

Current and previous
punch card transactions.

Send request to history
manager with punch card
transaction information

Check for matching
information with server at
login

Current cards

Send over local
information such as
number of current cards
and number of completed
cards

Test Case

Update server with local

Punch card transaction is

Punch card transaction is

21 | Loyalty Program

information

logged on to server

not logged onto server

Update event without
internet connection

card transactions saved
locally when there is no
internet, all local saved
transactions will be log
onto server database
when there is a internet
connection

card transactions not
saved locally without
internet, or all local saved
transactions is not logged
onto server database with
internet connection

Check for matching
information with server at
login

Local information from
phone and server matches

mismatching information

22 | Loyalty Program

User interface specification

This section will show all the different mock ups for each screen.

[Sentp] | Sienin |

Shows the login page for a user when they first open the application

all A2c G 1293 AM

Create Account

23 | Loyalty Program

The user may create an account if they are not a user.

ull apc 3G 12:16 AM

Do you have a business?

Q) Yes
Q No

First time login verification - Users can go ahead and create a business to link

ail aec Az 12:16 AM

Business Account

e I—
P —

B Terms and Agreements

I Dene] i Cancel]

If they are a merchant they will proceed to this screen.

24 | Loyalty Program

Pia Fa

Tl PizEa

Tha Kichan

Users will be shown a homescreen once they are logged in. The home screen can
contain featured ads as well as various other tabs.

25 | Loyalty Program

il ABC 3G

01:57 AM

Home: '{ Search qLoya\ty Card '{Setting \

Search for business

@_f:‘

D

Name

China place
Sub-Planet
Thai Kitchen
May House

Thai Flavor

New Japan

Healthy Sub

Phone #'s

363-2343

343-6454

373-1234

357-5632

341-856

323-0943

364-6940

Loyalty Card

Download
Download
Download
Download
Download

Download

Download

Search for businesses

Loyalty Card ﬁ

Pk e service o wand
d for FREE o0 wour Bih vsd!

@@@@Yé

This screen will allowthe user to select a card they want to use.

Loyalty Card .&

Pick Het seedne (i wasd
Ere FREE &5 i Kb viad]

@@@.Eé

v’ Caollect

Once selected, the user can punch the card by clicking on collect.

26 | Loyalty Program

all 283G 0315 AM

When the user hits collect, the QR scanner will automatically pop up. If it is successful,
the card will get punched.

Loyalty Card ﬁ

Fick H seedee (i wast
Ere FREE &5 ijnir b vis#]

@@%@Eé

Redeem

When the card is full, the user may try to redeem the reward once again by QR code.

27 | Loyalty Program

ull 2pc 3G 05:15 AM

The QR scanner will once again pop up for redeeming a reward.

View History

Change email and password

The setting page will allow the user to view previous completed cards or change
email/password. (Chris will change)

28 | Loyalty Program

anll ABS 3G 06:EF AH
[Hemee Y Search Y Loyaty Cord Y 2eting

Cards History

Tate
w2

1amEH
Frrand Eanwich ez
Fraw Eggrol 1MEMZ

45% O Fullaot e

If the user wants to view their history, they will be redirected to this screen.

il sBC 3G DEZ1 AH
[Hemee Y Secrch Y Leyaly Card Y seniing

Changs Passward

This screen will allowthe user to change their email/password. (Chris)

29 | Loyalty Program

S —
S —
e E—

Expirction date [09729/ 2012 E
A —
Theme: | Beiect one [w]

[sovecrdSume | [Cancel)

A merchant will have different options than a regular user. This screen shows how they
can create a punch card. (Chris)

Business Progress

;
3
3

Ech Month

A merchant can also see track their progress each month based on the number
of purchases, rewards redeemed ... etc.

30 | Loyalty Program

Software Specification

Technologies

Languages: PHP, JavaScript, MySQL, and sqlite.
Libraries: php gr code, phpMailer,JSON
SDK: Appcelerator Titanium

Server : Apache, MySQL, Amazon EC2

Appcelerator Titanium SDK

Using appcelerator, we are able to code once yet have it available for multiple platforms
such as android and iOS. We write our client side code in JavaScript and it is compiled
to native android and iOS code.

System Test Plan

Mainly done through use case scenarios

Use Case: UC1-Create Account

Trigger: User requests to create an account

Precondition: None

Interested Stakeholder: Customers and merchants

Actor: Customers and merchants

1. The user will have to input their email, password, and confirmation password.

2. When they hit sign up, their name and password will be logged into the database.
E1.1 The account is already existed in the database

E1.1 The error message will be displayed to the user that the account is already existed.
Output: Newaccount is created and it's going to be added to the system.

Use Case: UC 2-Login/Logout

Trigger: User start the application

Precondition: User must have signed up for an account.

Interested Stakeholder: homeowner and merchant

Actor: homeowner and merchant

1. The application will prompt the user to a login screen to enter their email and

31 | Loyalty Program

BaSSWRE ser will then hit login, which will then verify if their email and password exists in
the database.

E2.1 Name and password combination do not exist

E2.1 The error message will be displayed to the user that login information is incorrect.
Output: Login information is verified and the application is displayed to the user.

Use case: UC 3-Create loyalty card

Trigger: Merchant hit the create card button

Precondition: Must be login

Interested Stakeholder: Merchant

Actor: Merchant

1. The application will prompt the merchant to a create card screen where they have
to enter their new card information.

2. The merchant will then hit create, the system will then verify if their new card
information exists in the database.

E3.1 Loyalty card already existed in the database.

E3.1 The error message will be displayed to the merchant that this card is already
existed.

Output: New loyalty card is created/edited into system.

Use Case: UC 4-Expire loyalty card

Trigger: Merchant edit their loyalty card

Precondition: Must be logged in.

Interested Stakeholder: Merchant

Actor: Merchant

1. The merchant selected loyalty they want to edit.

2. The merchant update the expiration date for the selected card.
Output: Loyalty card is no longer valid.

Use Case: UC 5-Verify Punches

Trigger: Merchant scans QR Code

Precondition: Customer has downloaded card.

Interested Stakeholder: Merchant

Actor: Merchant

1. The customer gives phone to merchant to scan QR code
2. The merchant scans the QR code

Output: A punch is recorded for the loyalty card

Use Case: UC 6-Verify Reward
Trigger: Merchant scans QR Code

32 | Loyalty Program

Fuirenagition: Customer has downloaded card and has the required number of

Interested Stakeholder: Merchant

Actor: Merchant

1. The customer gives phone to merchant to verify the customer has earned the
reward

2. The merchant scans the QR code

Output: Loyalty card is marked as completed, no longer redeemable

Use Case: UC 7-Search Businesses

Trigger: Customer enters search criteria
Precondition: None

Interested Stakeholder: Customer

Actor: Customer

1. The customer specifies search criteria

2. Businesses matching search criteria are displayed
Output: List of businesses

Use Case: UC 8-Select a card

Trigger: Customer finds a card on a business’s page
Precondition: Must be logged in.

Interested Stakeholder: Customer

Actor: Customer

1. The customer selects a card from a business’s page
2. Information about the card is displayed

Output: Card information

Use Case: UC 9-Download Card

Trigger: Customer presses a button to download card

Precondition: Must be logged in, have a card selected

Interested Stakeholder: Card

Actor: Card

1. The customer presses a ‘download card’ button

2. Card information is downloaded from server and saved on the phone
Output: Card information

Use case : UC 10-Redeem punch

Trigger : User punches card

Precondition : Card must not be completed or expired.

Actors : User, local database, server database.

1. The hash value of the qr code is compared with the card’s local hash value.

E1 Hash value does not match, card is not updated with punch.

E1 User is notified qr code is not valid.

3. Card’s number of punches is incremented .

A1 If card’s number of punches matches the max punches assigned to card, card is

33 | Loyalty Program

changed to a completed state.

4. Update local database.

5. Update server data base if internet is available.

Outcome : User’s punch has been verified,card is updated with a new punch, and card
is updated in server side database if there is internet.\

Use case : UC-11 Redeem reward

Trigger : User collects reward

Precondition : Card must be in a completed state and not expired

Actors : User, local database, server database.

1. The hash value of the qr code is compared with the card’s local hash value.
E1 Hash value does not match.

E1 User is notified qr code is not valid and no reward is given.

2. Qr Code is verified and card is transitioned to a completed state.

3. Update local database.

4. Update server data base if internet is available.

Outcome : User has redeemed reward, information is updated locally and on the server.

Use case : UC-12 Store history

Trigger : Card information has been updated

Precondition :

Actors : Server database.

1. Take new card information and updated it in the server database.

Outcome : Card information is updated in the server side database, allowing for
merchants to see user history.

Use case : UC-13 Merchant query history

Trigger : Merchant requests user history

Precondition :

Actors : Merchant,Server database

1. Return users and their information of whom are using merchant’s cards.

Outcome : Merchant will have a list of users who currently have downloaded their cards.

Use case : UC-14 Customer query history

Trigger : User requests user history

Precondition :

Actors : User

1. Return list of completed cards for this user.

Outcome : User’s will be able to view a list of completed cards for him/her self.

34 | Loyalty Program

