

Team 23 Design Document

Customer Loyalty Program for
Small Businesses

Clients - Jay Namboor
Adviser - Dr. Govindarasu

Members:
Christopher Waters
Van Nguyen
William Tran

1 | Loyalty Program

Contents
System Functional Requirements... 3
System Non-Functional Requirements... 3
Functional Decomposition..4
System Analysis..5
Input/Output Module Specification.. 7
User interface specification..18
Software Specification..26

System Requirements

2 | Loyalty Program

Functional Requirements

FR-1 The system shall allow the user to login and logout.

FR-2 The system shall allow the user to create an account

FR-3 The system shall allow merchants to create loyalty cards

FR-4 The system shall allow merchants to expire existing loyalty cards

FR-5 The system shall allow merchants to verify customer punches

FR-6 The system shall allow merchants to verify customer rewards

FR-7 The system shall allow customers to search for local businesses

FR-8 The system shall allow customers to select loyalty cards

FR-9 The system shall allow customers to download loyalty cards

FR-10 The system shall allow customers to redeem punches

FR-11 The system shall allow customers to redeem rewards

FR-12 The system shall allow the database to store a history of completed punch cards

FR-13 The system shall allow the merchant to view card history for their business

 The system shall allow the customer to view personal card history for completed
rewards

Non-functional requirements

NFR-1 The system shall be developed using the Appcelerator SDK

NFR-2 The system shall use an encrypted SQLite database for local storage to prevent
other applications from interacting with a user’s card data

NFR-3 The system shall utilize hashing for punch a reward verification

Functional Decomposition

3 | Loyalty Program

The figure above shows the client and server sides interact.

4 | Loyalty Program

System Analysis

The way our system is designed is based mainly on a client-server architecture. However it is
somewhat unique in that both the server and client side will house some of its own data. The
reason for this is to provide some offline functionality. The offline functionality is needed when
the user is “punching” the card. If we were to depend on an internet connection, that may slow
the checkout process for the customer and the merchant. We do not want the application to
cause the business to lose customers because it is trying to connect to the internet.

That is why cards can be downloaded on to the client locally. The client itself will be responsible
for keeping track of the punch cards. It will handle everything from punching the card to
redeeming the reward.

Because of the offline capability, we proposed a cloud synchronization solution. If the user were
to ever lose their phone, they would not lose all of their punch cards. The Card sync module will
interact with the History Manager on the server side to ensure data on both the client and the
server are up to date.

Server Side

Notice how every module within the same layer can interact with one another. Same goes for
the client layer. For example if Business Manager needs to get the card that is owned by it, it
can call on the card manager to get that card from the database.

The responsibilities of the server include storing all of the user and the businesses. The way
each module is setup is based on their specific responsibilities. For example if a user wants
to download a card, it will eventually have to go through the card manager to get that card. For
more information on a module, please refer to the input/output specifications.

5 | Loyalty Program

Software Design Patterns
1. Model–view–presenter
We are using the model-view-presenter design pattern in order to separate logic from the view
from the model. A picture below describes the mvp structure.

Fig (Source : http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-
NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx)

In this case, the view is all of our UI. Whenever their UI needs to update/request information,
they will need to call a specific controller(presenter) assigned for handling certain jobs. That
controller will then update/retrieve the data and do any logic/format changes to the data before
it is passed back to the View. The Model ‘s only job is to update/retrieve data. The Views job is
only to display data. The controller will handle all the logic. Once again because of the client-
server architecture along with the offline capability, we almost have two-part controllers in
this case. Think about this, when the user attempts to create an account, the GUI will need to
interact with the account controller on the client side. The account controller on the client side
will then quickly do input checking ...etc , before sending the data to the Account manager
controller on the server side to store and verify the account has been created.

Input/Output Module Specification
6 | Loyalty Program

http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx
http://dotnetslackers.com/articles/silverlight/A-WaspKiller-Game-with-Silverlight-3-NET-RIA-Services-MVP-and-MVVM-Patterns-Part-1.aspx

Modules

Server Side
Card Manager
The card manager module will handle creation of cards and also retrieving cards.

Module Function Input Output

Store created loyalty card
onto the server

Title/Description/Number of
punches/Level/Expiration
Date/Place ID

Verification that loyalty card
is created and added it to the
server

Retrieving loyalty cards from
server

Place ID List of loyalty cards
information that match with
the Place ID

Test Case Success Fail

User(merchant) Create
loyalty cards for their
business

 Loyalty card does not
already exist for specific
business in the database.

Loyalty card already existed
in the database

User(Customer) Selected
loyalty card from specific
business

 Loyalty card is not expired
and it placeID match with
specific

Loyalty card exists or placeID
does not match with specific
business ID.

Account Manager
The account manager will contain code to create, lookup accounts, & reset passwords. When
creating an account, users will input an email and password combination. If a user already has
an account, they can login by submitting their email and password combination.

Module Function Input Output

User login

Email/Password Verification that a user is
logged in (Session?)

User creates account Email/Password Stores account in database
and notifies user.

User resets password Reset password Password is reset and sent to
user’s username

Test Case Success Fail

7 | Loyalty Program

User creates account. email does not already exist
in the database.

email already exists in the
database

User login email and password
combination exists in the user
database

email and password
combination does not exist in
the user

User resets password user password resets

History Manager
The History Manager will be responsible for maintaining a history of cards that have been
downloaded to a user’s phone. When the card is redeemed, the database entry corresponding
to that card will be marked as completed. It will also be able to sync up with a user’s phone
to keep track of partially complete cards so a user can download their cards in case they lose
access to their phone (e.g. phone breaks and they get a replacement phone or they upgrade
phones).

Module Function Input Output

Add Card Card Object Confirmation Card was
Added

Update Card Card Object Confirmation Card was
Updated

Retrieve Card <none> Uncompleted Cards

View History Search Criteria Cards Matching Search
Criteria

Test Case Success Fail

Add Card Card is added to Database Card is not added to Database

Update Card Card is updated in Database Card is not updated in Database

Retrieve Card Uncompleted cards are
downloaded to a user’s phone

Uncompleted cards are not
downloaded to a user’s phone

View History User receives a list of cards
matching search criteria

User does not receive a list of cards
matching search criteria

Business Manager

8 | Loyalty Program

The business manager module will handle creating and linking up business to users. It will also
handle request for anything information involving businesses.
This module must :
1. Create a business and link up to user account
2. Link up other accounts to business
3. Retrieve businesses of a user
4. Search request for business based on name
5. Search for businesses based on location

Module Function Input Output

Create a business and link up
to user account

UserID/Place Name/Location Verification that business is
created and linked up to an
account

Link up other accounts to
business

UserIDs/Place/BusinessID Verification that the business
is linked up to those accounts

Retrieve businesses of a user UserID List of business information
linked up to the UserID

Search request for business
based on name

Place name List of businesses matching
with place name with
locations.

Search request for business
based on location

GPS location List of businesses near GPS
location.

Test Case Success Fail

User(Merchant) Creates a
business

Business must be validated
before it is created. User will
be linked up to business.

Business creation request is
declined.

User(Merchant) Links up
other users to help manage
business.

User has the role(linked to
business already) to manage
the business.

User does not have the
role(linked to business
already) to manage the
business.

User(Merchant) retrieves his/
her businesses to manage.

User is linked to any
businesses.

User is not linked to any
businesses.

User Search request for
business based on name

Business matches that name
with in the database.

Business does not match the
name with in the database.

User searches for business
based on a his/her location.

There are businesses within
a range of that location

There does not exists not any
businesses with a range of
that location.

Encryption/Verification

9 | Loyalty Program

This module is responsible for encryption (sha-256) of input from the user such as
passwords. It will also have the responsibility of generating a QR code (with http://
phpqrcode.sourceforge.net/) for a specific card for a merchant to do punches.

Module Function Input Output

Hash a user password User password Hashed (password)

Generate a QR code Merchant Name + Merchant
ID

QR code of hashed Merchant
Name + Merchant ID

Test Case Success Fail

User password input Password is hashed none

Generate QR code QR code is generated
from hashed(Merchant
Name+Merchant Id+cardId)

none

Database

*history now have card_states (0 = not complete, 1 = completed, 2 = reward redeemed, 3 =
expired) and remove completed

10 | Loyalty Program

http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/

Business module - add location (lat and lon)

Client Side
Account
The account module will be responsible for the login/logout process of the user. It will also
handle the creation of accounts.
1. Login
2. Logout
3. Create Accounts

Module Function Input Output

User login username and password Verification if user is
successful or not, and open a
session to the user

User logout user clicks logout logs user out by closing a
session to the user

Create accounts email, password, and confirm
password

send information to server
side to create an account

Test Case Success Fail

User log into the system username and password
match with username and
password on the server

mismatching username and
password

User logout of the system the system close user
session

user session still run

Create new account email and password doesn’t
exist on the server

email and password exist on
the server

11 | Loyalty Program

Loyalty Card
This module will be use when the customer downloads a selected loyalty card. Once the
download card is complete, it will be store onto the phone database. The module will then be
required to handle punches of the a card. It will also mark the card is completed when punches
have been filled.
Cards have have only have one of four states

1. Not completed
2. Completed
3. Redeemed
4. Expired

Module Function Input Output

Download Loyalty Card Card Template ID Download the new loyalty
card and store it the phone

Punches card QR code and timestamp of
last punch.

Loyalty point to the card and
update the phone database if
QR code matches.

Last punch of card QR code, Update history module and
and mark card as completed
in database.

Get current loyalty cards Selected loyalty card Gets a list of current loyalty
cards.

Get completed loyalty cards Selected completed loyalty
card

Gets a completed list of
loyalty cards.

Test Case Success Fail

QR code verification hashed value of QR code
matches the one in the
database with the specified
card id.

hashed value of QR code
doesn’t match the one in the
database.

12 | Loyalty Program

Reward Verification
This module is responsible for the verification of a punch. When the user scans a QR code, this
module check the QR code’s value against the one in the database.

Module Function Input Output

Scan and Verify QR code Card id, hashed value from
QR code

Success or fail

Test Case Success Fail

Scan QR code verification hashed value of QR code
matches the one in the
database with the specified
card id.

hashed value of QR code
doesn’t match the one in the
database.

13 | Loyalty Program

Business
The business module will mainly interact with the business manager module on the server side
to get requested information based on a search criteria.

Module Function Input Output

Create a business UserID, Place name, and
location

Verification that business is
created and linked up to an
account

Retrieve businesses of a user UserID List of business information
linked up to the UserID

Search request for business Place name List of businesses matching
with place name with
locations

Test Case Success Fail

User(merchant) creates a
business

Business must be validated
before it is created. User will
be linked up to business

Business creation request is
declined

User(merchant) links up
other users to help manage
businesses

User has the role to manage
the business

User does not have the rule
to manage the business

User(merchant) retrieves his/
her businesses to manage

User is linked to any
businesses

User is not linked to any
businesses

User search request for
business based on name

Business matched that name
within the database

Business does not match the
name within the database

14 | Loyalty Program

History
The history module will interact with the history manager on the server to add and update cards
stored in the server’s database, download non-completed cards, and view a user’s history.

Module Function Input Output

Add Card Card Object Confirmation Card was
Added

Update Card Card Object Confirmation Card was
Updated

Retrieve Card <none> Uncompleted Cards

View History Search Criteria Cards Matching Search
Criteria

Test Case Success Fail

Add Card Card is added to Database Card is not added to Database

Update Card Card is updated in Database Card is not updated in Database

Retrieve Card Uncompleted cards are
downloaded to a user’s phone

Uncompleted cards are not
downloaded to a user’s phone

View History User receives a list of cards
matching search criteria

User does not receive a list of cards
matching search criteria

15 | Loyalty Program

Client Database

The client database will consist of :

loyaltycard table

● time_stamp - When the card was downloaded
● card_meta_data - refer below
● punches - Number of punches a card (Default of 0)
● last_punched - timestamp of last punch
● completed - if the card is completed or not
● redeemed - if the reward has been collected or not

card_meta_data will be a string version of this JSON object

● template_id - the id of the downloaded card
● place_id - the id of the card’s business
● title - title of the card
● description - description of the reward
● max_punches - max number of punches needed to redeem a reward
● level - level of the card
● verification - the verification code for this card
● expiration Date - the expiration date of this card

16 | Loyalty Program

Card Sync
This module shall be responsible for keeping the data on the phone and the server up to date.
That way, if the user were to switch to a new phone, the application should automatically
download the information they had when using the old phone to their new phone. To accomplish
this the module must:

1. Keep server up to date with local information.
2. It must also handle updating even if there is no connection to the internet.
3. Check at login to see if local information matches with server. (i.e. check number of current
cards and number of completed cards match). If it doesn’t match, it must download information
from the server.

Module Function Input Output

Update server with local
information

User ID, # of punches,
Timestamp of Last
Punch(YYYY:MM:DD
hh:mm:ss) and, reward
claimed (True/False)

Send request to history
manager with punch card
transaction information

Update event without internet
connection

Current and previous punch
card transactions.

Send request to history
manager with punch card
transaction information

Check for matching
information with server at
login

Login Send over local information
such as number of current
cards and number of
completed cards

Test Case Success Fail

Update server with local
information

Punch card transaction is
logged on to server

Punch card transaction is not
logged onto server

Update event without internet
connection

card transactions saved
locally when there is no
internet, all local saved
transactions will be log onto
server database when there
is a internet connection

card transactions not saved
locally without internet, or
all local saved transactions
is not logged onto server
database with internet
connection

Check for matching
information with server at
login

Local information from phone
and server matches

mismatching information

17 | Loyalty Program

User interface specification
This section will show all the different mock ups for each screen.

Shows the login page for a user when they first open the application

The user may create an account if they are not a user.

18 | Loyalty Program

First time login verification - Users can go ahead and create a business to link
.

If they are a merchant they will proceed to this screen.

19 | Loyalty Program

Users will be shown a homescreen once they are logged in. The home screen can contain
featured ads as well as various other tabs.

 Search for businesses

20 | Loyalty Program

This screen will allow the user to select a card they want to use.

Once selected, the user can punch the card by clicking on collect.

21 | Loyalty Program

When the user hits collect, the QR scanner will automatically pop up. If it is successful, the card
will get punched.

When the card is full, the user may try to redeem the reward once again by QR code.

22 | Loyalty Program

The QR scanner will once again pop up for redeeming a reward.

The setting page will allow the user to view previous completed cards or change email/
password.

23 | Loyalty Program

If the user wants to view their history, they will be redirected to this screen.

This screen will allow the user to change their email/password.

24 | Loyalty Program

A merchant will have different options than a regular user. This screen shows how they can
create a punch card.

A merchant can also see track their progress each month based on the number of
purchases, rewards redeemed … etc.

25 | Loyalty Program

Software Specification

Technologies

Languages: PHP, JavaScript, MySQL, and sqlite.
Libraries: php qr code, JSON
SDK: Appcelerator Titanium

Server : Apache, MySQL

Appcelerator Titanium SDK
Using appcelerator, we are able to code once yet have it available for multiple platforms such as
android and iOS. We write our client side code in JavaScript and it is compiled to native android
and iOS code.

26 | Loyalty Program

