Implementation / Testing Results

Implementation
The purpose of this section is to discuss how exactly our group had solved the problem
given to us by our client. This section will bring up design decisions that we ended up
using in the final version of the project, and reasoning for why we choose to use them.

Design - These are the core concepts that we used when designing the project to make
things clean, extendable, and functional.

Structures - The LCR library includes many custom C-structures, many of which
choose to use design patterns that only really make sense in C. Instead of trying
to directly cloning these structures to classes on the Java side, we decided to
improve them following Java paradigms instead of C paradigms. This means that
our classes would instantiate status classes in our structures instead of returning
bit fields or raw field numbers to the Java side.

Pointers - Pointers are obviously a very C-like concept that doesn’t translate very
well. Liquid Controls used pointers in several functions to return multiple objects
from a call. In situations like this we had to build custom return type classes that
included multiple members and returned those instead.

Enumerations - There are several places in the native LCR library where if we
were to directly clone the signatures to the Java side, we would have provided a
bunch of holes in our code where the programmer on the Java side could enter
illegal values. This issue is incredibly clear in the portion of the project dealing
with setting and getting fields. This process on the native side involves a C-like
generics system for accessing variables stored on the device. Instead of
providing an interface where the user could ask for a integer field then give the id
of a string variable, we restrict the developers requests to fields that align with the
return type of the method.

Exception Handling - *See Exception Handling in the Result section below.

Results - During our groups first meeting with the client we were given a run down of the
overview of the project as well as a series of implementation constraints. Now that the
implementation is complete we can discuss how our current codebase satisfies our
clients requirements.

Exception Handling - Since the fuel delivery process is very volatile (it requires
human interaction, an environment where things can stop working or unplug
themselves, etc.) it was a requirement of this project to be able to perform in the



expected environment and react logically when unexpected events occur. Most of
these statuses that the device tracks are returned with every native call. Instead
of having all of our wrapper methods return this status as well, we instead throw
an exception up to the Java level whenever something not normal happened.

This allows our wrapper to be more intelligent by being reactive to problems and
also prevents us from needing to create a custom return type class for every
method call.

Printing - It was required that our project do all printing through the flow meter
device using the LCR library instead of interfacing directly with the printer like our
clients previous implementation. To meet this requirement we simply had to wrap
the print methods available in the library. This involved properly handling unicode
strings between the Java and C side.

Async Wrapper Access - Since the fuel truck setup can include a two flow meter
configuration it was important that our wrapper could support being accessed
asynchronously. To solve this problem we simply synchronize all access to the
native wrapper from the Java side on a singleton class. This allows any number
of meter implementations to hit the device at the same time without the fear of a
deadlock.

Baud Rate - The previous implementation of this project ran at a baud rate of
9600. Our client hoped that we could have our implementation run at a higher
speed and still maintain stability. We were able to run all of our tests at a baud
rate of 19200 while maintaining stability.

64bit Runtime Environment - When our client first started this project 32bit
systems were prominent. Since then the industry has started to shift toward 64bit
systems. Because of this shift in computing environments our client required that
our project operates in 64bit OS environments so that it will work on any new
laptops he uses for his setups. Our solution to this problem is to compile our
native wrapper in 32bit configuration and then require that the environment that is
running the application (either 32bit or 64bit) to be running a 32bit JRE. We would
have prefered having a native wrapper for both 32bit and 64bit, but the creators of
the flow meter only provide a set of 32bit libraries, so we are stuck with a 32bit
wrapper only.

Java 7 JDK - Java has come a long way since our client first started working on
this project. He requested that our project not only compiles in the newest Java 7
JDK, but also takes advantage of the new classes and patterns. This wasn’t a
problem for our group seeing as we’ve all grown accustomed to Java 6 and 7
during our time as students (meaning we had no reason to go back to old design
patterns for synchronization or anything).



Testing

The purpose of this section is to discuss the methods in which our team tested our
codebase and the results of those tests.

Disconnected Device Test - Since we didn't have access to the flow meter device until
the last 3 months of the project we needed other ways to verify that our framework
communicates with the device library. These tests would use our wrapper to invoke all of
the native methods we had access to, and verified that they failed successfully.
Successful.

Connection Unit Tests - The first tests that we did to verify that we were capable of
communicating with the client’s hardware (and letting us know that our device
configuration worked) was to open a connection to the flow meter(s), call a function to
verify that the connection was successful, and then closing the connection. Successful.

Automated Deliveries - We created a series of unit tests to replicate the sequence of
actions involved in fuel delivery. Since there are several methods that a driver typically
deliveries fuel to a buyer, we did our best to create a separate test scenario to
encompass the drivers experience for each.

Preset Delivery - Delivery where the driver sets a preset volume to be pumped,
and then lets the device deliver exactly that much. Successful.

Manual Stop Delivery - Delivery where the driver watches the volume either
through the application or the meter’s display and manually switches the flow to
stop. Successful.

No Flow Stop Delivery - Delivery where the driver starts the flow of product, then
pauses it after some period of time with the “No Flow” setting enabled. With the
“No Flow” setting enabled, the delivery will end after a set interval of time.
Successful.

Test GUI Tests - A GUI meant to represent the clients existing software was given to us
at the beginning of this project. This GUI is capable of interfacing with the device in the
same exact way that our clients software does. We used this GUI to connect to the
device and test a series of features by hand. This included testing both the preset and
manual stop deliveries pretending that we were the fuel truck drivers. These tests were
probably the most important because the things that we were capable of doing in the test
GUI are exactly what the fuel truck drivers will be doing. Successful.

Set/Get Field Tests - Most of our implementation, as well as most extended use of the
flow meters capability, is based on the concept of getting and setting of fields stored on



the device. Since each field has an associated primitive type we designed a unit test for
each of the primitive type to verify that we are capable of both getting and setting fields of
that type on the device. These tests were verified in both an automated fashion as well
as using the devices monitor to check things were successful. Successful.



Operation Manual

Setup System
This section will discuss the hardware configuration of our system.

Demo System
This section will discuss the setup process of the demo. We decided that the
best way of preparing a demo was to record footage of a delivery happening on a
computer that had everything successful setup (both hardware and software).
Since the hardware configuration required for our test environment costs our
client several thousand dollars, it wasn’t a very likely idea that we would be able to
setup and demo the actual system inperson.

Demo of the preset delivery

e Driver selects to use a single device and starts a connection with a single
device.
Driver enters a preset amount of volume to be pumped.
Driver starts the delivery causing fuel to start pumping.
The Ul checks on the amount pumped by the flow meter every fraction of
a second.

e The preset amount of delivered fuel is met and the device prints a receipt.

Demo of the manual delivery

e Driver selects to use a single device and starts a connection with a single
device.
Driver starts the delivery causing fuel to start pumping.
The Ul checks on the amount pumped by the flow meter every fraction of
a second.

e The driver decides that enough fuel has been pumped and presses the
button to end the delivery.

e The device prints a receipt of the transaction.

GUI App - This is the application our client gave us for this project. You can see
the driver using the application throughout the entire demo to talk to the device.
This application is written in Java Swing and is reliant on a Java interface for
talking to the device(s). We had taken his application that had a test
implementation at the end of the interface (simply faked interactions, no device
communication) and replaced it with our own implementation. The interactions
you are seeing during the demo are actual interactions with the device through
our implementation.



FRAPS - Because we were incapable of performing a live demo for our
presentation we had to record a demo of this delivery in advanced. FRAPS is a
screen recording software used by many software developers to record
demonstrations. We simply install the application and instructed it to record the
office desktop while we performed the demo. It would have been more ideal if the
application would have only recorded the contents of the window instead of the
entire desktop.

Test System
This section will discuss how we had gone and tested our final system. These
topics discussed are broad because the details are already covered in the testing
results part of the final document.

JUNIT - We used JUNIT as the testing bed for all of our unit tests (both
automated and manual). It was easiest for us to manage as well as run a series
of tests when they fit the JUNIT format. These unit tests could be designed,
committed to Git, and run either as a one-off or a collection all from Eclipse IDE.

Test GUI - Our client gave us a test application that mimics that software that the
fuel truck drivers have access to. We used this application to test our
implementation in a fashion similar to how the truck drivers will. These tests were
performed in the clients office where all the hardware was configured.



