

2013

Team Dec13-17

EE/CprE/SE Senior Design

12/1/2013

Integrated Analysis Platform of Brain Wave Data
Implementation and Testing Results

Page 1

Table of Contents
Implementation .. 2

Implementation Block Diagram .. 2

Results Generated... 3

Grand-Averaged Electrode Locations .. 3

Spatial Principal Component Analysis (Spatial PCA) Results ... 5

Mass Univariate Analysis Results .. 6

Error Checking... 7

Input Value Validation .. 7

Analysis Data Validation .. 8

Object-Oriented Implementation ... 9

Testing Results .. 12

Unit Testing ... 12

White-Box and Black-Box Testing ... 13

Usability Testing .. 13

User Acceptance Testing ... 13

Page 2

Implementation

Implementation Block Diagram

Figure 1.1: Block Diagram of our Implementation

This block diagram represents our complete solution. Our application required refactoring

existing TDAM legacy scripts into reusable Matlab functions. Some of these scripts required to

communicate with third-party tools, which our application also utilized.

Our application leveraged the TDAM source, third party tools, and our own source to input raw

ERP data, store analytic results in intermediate .mat files, and interpret these results as ERP’s

and topographies, which are displayed to the user on demand.

All of these operations are now done at a click of a button, unlike how they were originally

generated through a mixture of repetitive file structuring tasks and matlab command line calls.

Page 3

Results Generated
The results generated by our application come in several forms: Grand-Averaged electrode

locations, Spatial PCA results (in raw form, promax rotation, and varimax rotation), and Mass

Univariate Analysis Results. A brief description of each type of result is shown below.

Grand-Averaged Electrode Locations

The first type of results our application generates are the Grand-Averaged Electrode locations.

Upon building a dataset, the researcher will generally check this result to validate they have the

correct input data. This result draws a 2D map at each electrode location. Each electrode

displays its electrode name, and the grand-averaged ERP response for each subject and

condition.

Figure 2.1: Grand-Averaged Electrode Locations

Page 4

The researcher may also choose to zoom in on an electrode if they wish by double-clicking the

electrode. The zoomed-in electrode ERP will appear in a new window.

Figure 2.2: Zoomed-In Grand-Averaged Electrode

If the researcher approves of their input data, they will move on to Spatial Principal Component

Analysis.

Page 5

Spatial Principal Component Analysis (Spatial PCA) Results

The next type of results our application generates are the Spatial PCA Results. At this step, the

researcher inputs the dataset, selects which electrodes they would like to include in the analysis,

and what epoch (time period) they would like to include. The Spatial PCA computes the data and

returns a paired ERP and a Topography for each Spatial Component it determines it must retain.

 Figure 2.3: Spatial PCA Topography (left) and ERP (right) for a Spatial Component

After performing Spatial PCA and approving of the results, the researcher will move on to Mass

Univariate Analysis.

Page 6

Mass Univariate Analysis Results

The third type of results our application generates are the Mass Univariate Analysis Results. The

Mass Univariate Analysis Results return an ERP for each Spatial Component from the Spatial

PCA.

Figure 2.4: Mass Univariate ERP (right) for a Spatial Component

Page 7

Error Checking
In our solution, we implemented various types of error checking. A direct request from our

client was to make the solution do extensive error checking. Previous similar products they had

used lacked a lot of this, which led to frustration.

 Input Value Validation

One type of error checking we implemented was input value validation. Every input field in our

solution checks that the input value is the correct format (integer, string, etc). An example is

shown below.

Figure 3.1: Error Checking for Baseline

Page 8

Analysis Data Validation

Another type of error checking we did was analysis data validation. Every analysis our solution

performs, contains error checking for correct input parameters before doing any calculations.

For instance, before building a dataset, our application makes sure the user has input the

correct number of subjects and conditions, and these map correctly to the number of input files.

Figure 3.2: Error Checking for Dataset Parameters

Page 9

Object-Oriented Implementation
Matlab is a procedural language by nature, but has some support for object oriented

programming. We left our application design, from Senior Design I, open so that we could

decide whether or not to utilize Object-Oriented Matlab. Once we began experimenting with

Matlab OO programming, we converted our project over to completely Object-Oriented code.

Specifically, we have implemented a Model-View-Presenter (MVP) architecture into our

application.

Figure 4.1: Our MVP Architecture

The Model classes contain all of the Matlab data structures and Analyses within the brain wave

application. It inherits a ModelBase class, and has no notion of the view. It is completely

business logic.

Figure 4.2: Plot SPCA Model, containing only analyses and data

 Page
10

The View classes are the 2D forms you see, as Matlab .fig files, coupled with a Matlab GUI

template, as .m source files. The Views reference a handle to the presenter on startup

(OpeningFcn method is equivalent to the GUI’s constructor). When the user interacts with the

View, it calls a method in the Presenter.

Figure 4.3: Plot SPCA View with OpeningFcn(), that binds to the Presenter

 Page
11

The Presenter classes separate the Model from the View. The Presenter decides what actions the

Model performs in response to the View. The Presenter also listens to the Model’s properties.

When a Model property updates, the Presenter updates the View accordingly.

Figure 4.4: Plot SPCA Presenter with Constructor that listens to the Model

 Page
12

Testing Results

Unit Testing
In addition to the Matlab Framework, we used Matlab xUnit Testing Framework to perform Unit

Testing on most of the methods we wrote. Every large analysis (Dataset, SPCA, MUA), we wrote

at least three unit tests, one test for the standard use case, then at least two for

alternative/exceptional cases.

An example of one of our “standard use case” unit tests is shown below. This unit test checks

the Build Dataset functionality under normal conditions. The assertEqual is a Matlab xUnit

testing function, which passes if two values are equal.

Figure 5.1: Unit Test for the Standard Build Dataset Use Case

An example of one of our “alternate/exceptional” use case unit tests is shown below. This unit

tests checks the Build Dataset functionality when the number of subjects and conditions doesn’t

line up with the input files. The assertFalse is a Matlab xUnit testing function, which passes if the

expression returns false.

Figure 5.2: Unit Test for the Alternate Build Dataset Use Case

 Page
13

White-Box and Black-Box Testing
In addition to Unit-Testing, each developer on Team 17 performs their own white-box testing to

ensure each property, method, and class they submit to our repository is functions the way it is

intended. White-box testing involves using several different use cases, and debugging step-by-

step through each line of code they write.

Black-Box testing was performed by each developer in a similar fashion to white-box testing.

The key difference is when the developer is testing; they test it at the application-level, where

no interaction with code is involved. They do this to ensure usability, performance, and that all

requirements are met for this piece of functionality.

When each developer committed a piece of code, they ensured that they have white-box tested

over 70% of committed lines of code, and black-box tested for every applicable requirement.

They ensured that all of their code performed as expected, and there are zero critical defects,

zero major defects, and no known minor defects at the time of the commit.

Usability Testing
Team 17 met with our client multiple times throughout both semesters, in which we performed

usability testing on both our Wireframe Mockups, and early versions of the software

application. These were a mostly informal process, but changes made to the application were

immediately reflected in new revisions of the design document, as well as in weekly reports. Our

final usability testing session was performed on November 7th, in which our client reported

satisfied with the existing application usability.

User Acceptance Testing
Team 17, in conjunction with Dr. West and his colleagues; have performed a two-part User

Acceptance Testing. The first part was performed on November 7th, along with final Usability

Testing. We tested whether the data and analyses running through the application were

performing successfully, and whether the application was “acceptable” as a whole. Our client

reported some minor bugs and feature requests, but had an overall positive outlook on the

project.

Our second phase of User Acceptance Testing will be performed during Dead week (12/9-

12/13). This will be the formal “Adopt/Not Adopt” decision by the client. The application is

expected to be fully functional, with no critical issues. After this meeting, the entire application,

with source code, will be given to the client for his indefinite use.

