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1) Project Overview 
The purpose of this project is to provide students enrolled in Computer Engineering 537: Wireless 
Network Security at Iowa State University with an environment in which they can carry out various 
experiments involving different wireless communication protocols. Our goal is to build a sandbox style 
environment capable of supporting four simultaneous users with the tools and hardware needed to 
carry out a multitude of different experiments, and make this environment accessible from anywhere in 
the world to support the needs of both on- and off-campus users. The rest of this document deals with 
the design and configuration of the environment.  It is broken down into three main sections: system 
design, detailed implementation, and testing. 

 
  

 



2) High-Level System Design 
The main objective of the project is to provide a remotely accessible laboratory environment where 
students can carry out wireless security experiments. Any wireless security experiment would ideally 
require at least three interactive nodes: two transceiver nodes communicating information wirelessly 
with each other and an attacker node which attempts to target the wireless communication. 

 

 
 

Transceiver 2 
 
 
 
 
 
 
 

Attacker 
 
 
 
 
 
 
 

Figure 1: Basic three-node attack scenario 
 

An infrastructure setup may additionally require a coordination center like an access point in a Wi-Fi 
network or a base station in a GSM network. In this case the two transceivers will communicate with 
each other through the coordination center or a single transceiver will communicate with the external 
network through the coordination center. 
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Figure 2: Two-node infrastructure-based attack scenario 

 
The experimenter will ideally require at least minimal remote access to two transceiver nodes or a single 
transceiver node and an access point to set up a viable experiment and the attacker node to carry out 
this experiment. Many wireless security experiments require direct access to the wireless interface to 
bypass certain protocols and carry out an attack. It is also the goal of this project to build an 
environment where an experimenter can remotely carry out many different types of wireless security 
experiments without limitation to hardware access. Thus an experimenter will require full access to at 
least two different machines , each with its own wireless interface and running remote desktop 
software, and may additionally also require access to a third machine or an access point. 
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Figure 3: Remote access laboratory single-user overview 

 
Another important part of the project is to provide multiple user access, such that many users can 

access the lab hardware remotely at the same time. After much debate and analysis, the client and the 
team have come to the conclusion that we will support up to ‘four’ users at the same time. As each user 
will require at least two machines and the lab will support four users at the same time, the lab will need 
at least eight remotely accessible machines. To setup such a hardware platform we have decided to use 
virtual machine servers which can support multiple virtual machines at the same time. This will not only 
help bring down the cost but will also help with setup and administration. 

*A detailed description of the VM setup is provided in the Detailed Design section of this document. 

Valid users will be able to access the lab environment remotely over the public internet from anywhere. 
They will first pass the Iowa State network firewall to connect to a local Iowa State VPN server using valid 
credentials. They will then pass the lab environment network firewall to connect to the lab environment 
using remote desktop and valid credentials. The lab environment will house the virtual servers and the 
wireless hardware to carry out wireless security experiments for Wi-Fi, Bluetooth and optionally GSM and 
RFID. 

 



3) Functional Decomposition 
The system as a whole will attempt to provide a laboratory environment for the students such that they 
can carry out many different types of wireless security experiments related to Wi-Fi, Bluetooth, GSM, 
RFID and/or ZigBee. This section attempts to divide the whole project into several parts, whereby each 
part plays a functional role to satisfy the requirements. 

 
3.1) Hardware Architecture: 
This part of the project involves the setup and the configuration of the VM servers and the wireless 
hardware. The VM servers will need to be set up such that each VM can independently support its own 
Wi-Fi, Bluetooth, and/or other wireless adapters. The wireless hardware will include all necessary devices 
such as routers, switches, antennas, radios, spectrum analyzers and wireless cameras. 

 
3.2) Software Architecture 
This part of the project involves the setup and configuration of the Operating Systems, wireless tools, 
user accounts, remote desktop software and any other custom software to support wireless attacks and 
hardware integration. The lab will also include a web interface to provide administrative information 
and network monitoring for the users. 

 
3.3) Wireless Experiments 
This part of the project involves the configuration and implementation of security critical wireless 
experiments for the following technologies 

 
Wi-Fi 3-4 experiments 
Bluetooth 1-2 experiments 
GSM 1-2 experiments (optional) 
RFID/ZigBee 1-2 experiments (optional) 
3.4) Project Documentation 
Project documentation will include: 

 
Project Plan: This document will define functional and non-functional requirements for the project and 
provide a timeline. 

 
Design Document: This document will provide a detailed design for the overall project and for each 
individual part of the project. 

 
Testing Report: This document will list test results for any preliminary testing and final testing at the end 
of the project. 

 
Final Report: This document will provide a final analysis of the project after completion and suggest 
future development or action. 

 
Administrator Documentation: This document will provide a reference guide for the instructor and the 
teaching assistant to administer and manage the systems. 

 
Student Documentation: This document will provide detailed instructions and tool descriptions for 
wireless experiments for the students. 

 



4) Design Tradeoffs 
 

Physical Machines vs. Virtual Machines 
Installing a large number of physical machines can be very expensive and the machines themselves will have 
to be configured separately. A virtual machine server can be a very effective solution, especially when a large 
number of machines need to be set up and accessed remotely. These virtual machines can also be configured 
and administered easily using a common console. They also provide the added benefit that they can be 
replaced with an existing image if something goes wrong or the machine gets corrupted. 

 
Single Adapter vs. Multiple Adapters 
A single wireless adapter can potentially be used by multiple users connected remotely for only a very few 
select specific experiments. Many wireless security experiments require direct access to the wireless interface 
to bypass certain protocols and carry out an attack. Thus, each wireless adapter can be accessible by only one 
user at one point of time. Also, although the virtual machines can share a single Ethernet adapter, they cannot 
share a single wireless adapter. Thus each virtual machine will need its own separate wireless adapter. 

 
Single Router vs. Multiple Routers 
A single router can be used to set up different wireless networks with different names and different 
encryption techniques. However each network run by a single router needs to run on the same channel and 
running multiple networks can also overload the router. Thus a single router can support only one jamming 
experiment and multiple routers will be needed to support multiple users. 

 
PCI Adapters vs. USB Adapters 
PCI adapters have been available in the market for a long time now and have better support and 
troubleshooting for attack experiments. However, USB adapters are starting to be used more and more 
extensively nowadays and offer the added advantage that they can be connected to the VM server using 
extensible USB cords such that they can be spaced apart to limit interaction and interference between the 
radio waves. Additionally, server machines often do not come with a very large number of PCI slots and USB 
adapters may be necessary to support multiple adapters for the multiple VM’s. 

 
Windows OS vs. Linux OS 
Windows OS has arguably better support for remote access and is the more widely used operating system. 
However, Linux OS offers better flexibility, has better support for wireless tools, can be easier to configure 
and is an open source solution. Windows users can take some time to get used to the Linux environment; 
however, Linux offers much better support for wireless tools and can therefore be considered the better 
option for carrying out wireless security experiments. 

  

 



5) Low-Level System Architecture 
The full-system architecture consists of three distinct but related sub-architectures: hardware, software, and 
network. The hardware architecture consists of all physical components necessary to properly implement the 
requirements of the project (e.g. computing equipment, radios, network interconnect hardware, and any 
custom-built hardware deemed necessary). The software architecture consists of all non-physical components 
of the project (e.g. virtualization environment, operating systems, exploit tools, administration services, user 
scripts, and device firmware for any modified or custom device in use). The network architecture contains 
some components of both hardware and software architecture, but abstracts these components to deliver a 
node-centric view of inter-device communication paths and protocols. 

 
5.1) Hardware Architecture 
The hardware architecture was designed with the intent of employing commodity hardware in creative 
ways in order to fulfill the unique needs of the project in a cost-effective way. Attempts were made to 
consolidate hardware wherever possible to trim costs and ease administration. The end result is robust 
yet easy to use and expandable should future need arise. 

 
The backbone of the project consists of two commodities x86-based servers. These will serve as the sole 
compute nodes for all project-related services and users.  The servers will be sufficiently powerful such that 
no student’s use of the environment will noticeably impact its usability for any other student, nor will the 
necessary backend services disrupt or be disrupted by student usage.  Due to materials on hand, a single 
server based on Intel’s Xeon 5500 series processor technology and architecture was chosen as the initial 
test bed for this project. Xeon 5500 is a maturing series (which leads to lower costs), but still utilizes Intel’s 
current-generation Nehalem core for an excellent power to cost ratio. Paired with triple- channel DDR-
1333 and a mainboard supporting advanced Intel Virtualization Technologies, this is a very capable 
architecture for a multi-user, multi-service environment. The full technical specifications for the test server 
are listed below; however, it should be noted that the final implementation will utilize two machines of 
possibly lower performance, in order to spread the I/O load. 

 
 

5.1.1) Base Testbed Specifications: 
Processor: Intel Xeon 5504, 4x2.0GHz, two CPUs 

 

Mainboard: 
 

Supermicro X8DTL-3F X58-chipset board, with IPMI 
 

Memory: 
 

12GB ECC DDR3-1333, 6x2GB 
 

Storage: 
 

Western Digital RE3, 500GB, two drives, JBOD 

 
In addition to the core systems, peripherals are necessary in order to communicate with the wireless 
networks under test.  The Xeon 5500 series architecture provides support for Intel Virtualization 
Technologies for Directed I/O (VT-d), which allows virtual machines to have direct access to the PCI bus. 
This allows for the ability to access PCI- or PCI Express-connected Wi-Fi cards as virtualized hardware, 
which would not be possible on a platform which does not support VT-d. Using Atheros PCI-based 
interfaces enables the utilization of the very well-supported open-source driver package ath5k, which by 

 



virtue of being open may be able to be modified to generate novel attacks. Ultimately, however, the team 
has chosen to utilize USB-based dongles from Ralink, which has a less-supported but similarly open-source 
driver, and eliminates the need for a platform supporting VT-d or a motherboard with more than four PCI 
or PCI Express slots. Banking on the use of largely independent host controllers (motherboard controllers 
supplemented by PCI Express-based add-on card controllers), the USB devices should experience no more 
noticeable latency than the PCI solution, and provide a comparably priced, more convenient alternative. 

 
In addition to base computing resources, several other hardware devices are necessary to complete the 
lab environment.  A number of wireless access points are required in order for the devices to speak to 
one another and for many of the attacks to be properly carried out. Some method of analyzing the 
signals present in the laboratory – whether spectrum or waveform – was requested by the client as a 
means of better understanding the attacks taking place.  Finally, hardware for any protocol being 
studied other than Wi-Fi – such as Bluetooth – would also need to be made available. 

 
The choice of hardware type and interface, and equipment multiplicity, has been carefully weighed 
between price, performance, user experience, and implementation practicality. The following 
summarizes the pros and cons of several implementation scenarios for Wi-Fi hardware; similar tradeoffs 
exist with other interface options (such as Bluetooth). 

 
5.2) Wi-Fi Hardware Scenarios: 

 
Scenario 1: 1/1/1 Bridged 
Transmitters: 1 Wi-Fi 

 

Access Points: 
 

1 
 

Attack Nodes: 
 

1 Wi-Fi (shared via Ethernet bridge) 
 

Simultaneous users: 
 

Many 
 

Implementation: One transmitter communicates over one access point. Attack node is accessible 
to users over a virtual Ethernet connection. Users send packets to virtual attack 
node, which relays them to the radio. 

 

Pros: Requires only two wireless interfaces and an access point, so cost is low.  No 
worry about multi-channel interference.   Assuming a sufficiently powerful host, 
would support every user simultaneously. Few privileges needed on the 
machine for use. 

 

Cons: Many attacks require driver-level access to the wireless interface, which is not 
accessible over a virtual Ethernet bridge, therefore this method severely limits 
the types of attacks which are possible. Users could write attacks which require 
unfair amounts of radio time, take down the network, or otherwise negatively 

impact other users’ experiences. 
 
 
 

 



 
 

Scenario 2: 1/1/1 Shared 
Transmitters: 1 Wi-Fi 

 

Access Points: 
 

1 
 

Attack Nodes: 
 

1 Wi-Fi (shared) 
 

Simultaneous users: 
 

1 or Many 
 

Implementation: One transmitter communicates over one access point. Users simultaneously log 
on to attack node directly and generate attacks on local hardware. 

 

Pros: Requires only two wireless interfaces and an access point, so cost is low.  No 
worry about multi-channel interference.  Assuming a sufficiently powerful host, 
would support every user simultaneously. Local hardware allows driver-level 
access, so most attacks are feasible. 

 

Cons: Limited support for driver-level access by multiple simultaneous users; device 
locking by OS may allow only one user access to hardware at a time.  If multiple 
users are allowed, users could write attacks that would require unfair amounts 
of radio time, take down the network, or otherwise negatively impact other 
users’ experiences. 

 
 
 

Scenario 3: 1/1/4 Independent 
Transmitters: 1 Wi-Fi 

 

Access Points: 
 

1 
 

Attack Nodes: 
 

4 Wi-Fi 
 

Simultaneous users: 
 

4 
 

Implementation: One transmitter communicates over one access point. Four machines with 
radios are available for student use, one student per machine, first come first 
served. 

 

Pros: Requires five wireless interfaces and an access point; cost is fairly low.  No 
worry about multi-channel interference. Potentially lowers the requirement for 
host power due to lower user count. Local hardware on single-user system 

 



 

guarantees unrestricted access to radio. 
 

Cons: Limited to four simultaneous users; others must wait for slots to open. A 
single target network means users can negatively impact other users’ 
environment experience, which may be manifest in unpredictable results 
or unreliable environment operation. 

 
 
 
 

Scenario 4: 4/4/4 Independent 
Transmitters: 4 Wi-Fi 

 

Access Points: 
 

4 
 

Attack Nodes: 
 

4 Wi-Fi 
 

Simultaneous users: 
 

4 
 

Implementation: Four transmitters communicate over four access points. Four machines with 
radios are available for student use, one student per machine, first come first 
served. 

 

Pros: Each user may run any attack on the environment, including denial-of-service or 
jamming attacks, with little risk of disrupting other users. Local hardware on 
single-user system guarantees unrestricted access to radio. 

 

Cons: Limited to four simultaneous users; others must wait for slots to open.  This 
volume of USB devices requires a hub or controller card. Cost is comparatively 
high.  Interference between four independent networks may be a problem. 

 
 

Given these choices, and the relatively low cost of the variable hardware being considered, it was 
ultimately decided to pursue a plan of independent networks with four transmitters, four access 
points and four malicious radios. This choice guarantees the greatest number of possible attacks 
and the best reliability for all users. 

 
In terms of physical hardware used, the radios will be chosen according to greatest chipset 
compatibility with attack generation; testing is currently ongoing to determine the relative 
performance of several retail cards in this regard. As previously mentioned, Ralink chipset devices 
are being most closely inspected, but the precise family has yet to be decided. 

 
For access points, the team will be utilizing consumer-grade routers.  As these will not be used for 
file transfer or other massive-throughput applications, they will be chosen based on low cost and  
compatibility with the DD-WRT custom firmware package. Currently, four D-Link DIR-601 routers 
form the access point array for the environment. 

 



 

 
In order to support attacks on Bluetooth equipment, five economy Bluetooth to USB adapters will be 
added to the machine, in the configuration of two transmitters, one receiver, and two attack adapters. 
One or more USB hubs or PCI/e to USB controller cards will be necessary to accommodate these and 
the Wi-Fi adapters. 

 
To add depth to the project, some other unique hardware will be made available. A Wi-Fi camera will 
be added to the lab to allow students the ability to attempt attacks against a practical target. In 
addition, a USB-based spectrum analyzer tool will be placed in the lab and will be accessible to students 
to allow the visualization of the radio environment. This will either be an off-the-shelf unit, or a tool 
developed on top of the TI eZ430-RF2500 development platform. 

 
It is also desirable to be able to see waveforms of some of the radio activity to analyze network 
modulation schemes.  An attempt will be made to construct a hardware interface to capture network 
traffic, convert to baseband, and display the result to the user, although the details of the 
implementation of such a device are in a very early stage of development. 

 
Should the client decide that another protocol is also to be supported (e.g. RFID, GSM, etc), these 
implementations will require hardware as well, which likely will consist simply of additional USB devices. 

 
A full-system hardware diagram is illustrated below. 

 



 

 
 

Figure 5: Full-system hardware architecture 
(servers depicted as complete units for 
simplicity) 

 

 
The final goal of this project is to implement a functional GSM OpenBTS (base transreceiver station) 
network on the ISU network, using USRPs (universal software defined radio peripherels) from National 
Instruments. The project needs to implement a small-scale implementation of the OpenBTS (single 
USRP). The main functional requirement is that implementation of that the interfacing with the USRPs is 
done via LabVIEW.  
 
Firstly, we need to understand what are the functionalities of USRPs, what is SDR (software define radio), 
what is BTS (base transceiver system) and how can we use our resources in order to implement an 
OpenBTS. 
  

 



 

Software Defined Radio (SDR) 
A software-defined radio system, or SDR, is new technology for implementing radio communications 
systems. Components that have been typically implemented in hardware are instead implemented by 
means of software on a personal computer or embedded system. Implementations of radio 
communications in software have lots of advantages over traditional hardware implementation.  
Some of the advantages are: 
 Makes communications systems reconfigurable (adapting to new standards), keeping the 

hardware configuration the same. 
 Upgradable. Modifiable. Whereas, traditional hardware have fixed design and can only provide 

limited implementation of filters. 
 Flexible enough to avoid the limited spectrum assumptions. 
 Ability to implement cognitive/smart radio. 

Figure: Components of a SDR system 

 
USRPs: 
Universal Software Radio Peripheral products are computer hosted software radios. They can be 
connected to a host PC through a high-speed USB or Gigabit Ethernet Link and can turn the standard host 
PC into wireless prototyping platform. USRPs are commonly used with the GNU Radio/LabView software 
suite to create complex software-defined radio systems. 
The USRP product family includes a variety of models that use a similar architecture. A motherboard 
provides the following subsystems: clock generation and synchronization, FPGA, ADCs, DACs, host 
processor interface, and power regulation. These are the basic components that are required for 
baseband processing of signals. A modular front-end, called a daughterboard, is used for analog 
operations such as up/down-conversion, filtering, and other signal conditioning. This modularity permits 
the USRP to serve applications that operate between DC and 6 GHz. 
 
 
 
 
 
 
 

 

http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter


 

Figures: 
(1) Snapshot of an USRP                                                   (2) Schematic diagram of the hardware layout: 

                                                                                       
 
 
 
 
 
 
BTS (base transceiver station) 
A base transceiver station (BTS) is a piece of equipment that facilitates wireless communication 
between user equipment (UE) and a network. UEs are devices like mobile 
phones (handsets), WLL phones, computers with internet connectivity, WiFi and WiMAX devices and 
others. The network can be that of any of the wireless communication technologies 
like GSM, CDMA, Wireless local loop, WAN, WiFi, WiMAX, etc. 

BTS works by regularly sending beacon signal in its coverage range, registration the mobile station in its 
coverage and as soon as the mobile station invokes service a free channel is assigned to it. MS (mobile 
station) sends its voice or data signal to BTS and BTS sends it to BSC (Base Station Controller) and BSC 
sends it to MSC (Mobile Switching Center)and MSC connects to the other side Mobile Station/PSTN 
phone/ or connects to SMSC (Short Message Service Center)if the service is for SMS or SGSN (Serving 
GPRS support node) for internet service. Thus BTS is the first contact for connection or release of a 
mobile service. 

A BTS in general has the following parts: Transceiver (TRX), Power amplifier (PA), Combiner, Duplexer, 
Antenna, Alarm extension system, Control function and Baseband receiver unit (BBxx). 

 

http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/User_equipment
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Wireless_local_loop
http://en.wikipedia.org/wiki/Computers
http://en.wikipedia.org/wiki/WiFi
http://en.wikipedia.org/wiki/WiMAX
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/CDMA
http://en.wikipedia.org/wiki/Wireless_local_loop
http://en.wikipedia.org/wiki/Wide_area_network
http://en.wikipedia.org/wiki/WiFi
http://en.wikipedia.org/wiki/WiMAX


 

 
Figure: Simplified diagram of cellphone network structure 
 
 
 
 
OpenBTS (Open Base Transceiver Station) 
OpenBTS (Open Base Transceiver Station) is a software-based GSM access point, allowing standard GSM-
compatible mobile phones to be used as SIP (Session Initiation Protocol) endpoints in Voice over 
IP (VOIP) networks. 
OpenBTS replaces the conventional GSM operator core network infrastructure from layer 3 upwards. 
Instead of relying on external base station controllers for radio resource management, OpenBTS units 
perform this function internally. Instead of forwarding call traffic through to an operator's mobile 
switching center, OpenBTS delivers calls via SIP to a VOIP soft switch or PBX (private branch exchange). 
Figure: One implementation of OpenBTS 

 
 
 
 
 
 
Our project: 
What we will be 

trying to implement in our senior design is to program the USRP using LabVIEW/ GNU radio and make it 
act like an OpenBTS. That way we can cause our cellphones to connect using the OpenBTS network, 
instead of connecting to the cellular network and make Skype calls. 
Figure: Below we have tried to illustrate how we might go about implementing on what is required  

 
 
 
  

,LabVIEW 

 

http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Network_switching_subsystem
http://en.wikipedia.org/wiki/Base_station_subsystem%23Base_station_controller
http://en.wikipedia.org/wiki/Radio_resource_management
http://en.wikipedia.org/wiki/Mobile_switching_center
http://en.wikipedia.org/wiki/Mobile_switching_center
http://en.wikipedia.org/wiki/Session_Initiation_Protocol


 

 
5.2) Software Architecture 
The software required to implement all features of this project is a mixture of operating systems, open- 
source utilities, custom shell scripts, web applications, and embedded firmware. Generally speaking, 
the operating systems and utilities are unmodified off-the-shelf products, while all of the supporting 
software is written by the team. 

 
At the root of all software systems is the hypervisor. The hypervisor is installed as an operating 
system on the physical host, and emulates physical hardware to allow other operating systems to run 
inside containers (“virtual machines”) within it.  The software chosen for this project is VMware 
vSphere Hypervisor (formerly VMware ESXi), a mature, full-featured product which is licensed from 
VMware for no cost. It was chosen for its feature set, ease of management via vSphere Client, and a 
moderately strong team background in its use on top of the hypervisor, two sets of virtual machines 
are installed, one set per physical host. The first set is an array of machines running the BackTrack 
distribution of Linux, a security-centric distribution that comes pre-loaded with many of the tools 
necessary to run experiments on the lab environment. One BackTrack machine is created for each 
student that will be using the environment, to enable the student to create custom scripts, modify 
system files, and otherwise configure the system as much as they deem necessary to execute any 
particular attack, without affecting any other user. The second set is an array of transmitter nodes, 
again one per student. These will run the Arch lightweight Linux distribution. A few additional 
machines will be configured in addition to the basic student-accessible machines. One additional 
machine will be installed alongside the transmitter nodes to serve as the receiver for any transmitter 
action which requires an endpoint, such as file transfers or Bluetooth communications, and one will 
be installed to act as a firewall and port blocker between the transmitter machines and the outside 
world to ensure correct traffic routing between interfaces.  One machine will be installed on each 
host which will configure the host upon startup (this will be covered in greater detail shortly). A final 
machine will be installed alongside the attack nodes which will serve as the administration node for 
the environment, hosting the web interface and user documents, and running all necessary back-end 
processes. 

 
Each machine that is designed to be single-user remotely accessed (all attack and transmitter nodes) 
will run NoMachine NX Server, which handles remote session serving.  Alternately, users may log on via 
SSH using a terminal emulator if they do not require a GUI. The administration node will be given only 
SSH access. SSH access will also be enabled on the hypervisor. 

 
The two host configuration nodes are necessary to provide a workaround to peculiarities in the 
hypervisor. Upon cold boot, the host wipes the local file system, including the configuration for all 
system processes and the SSH key cache. As these are necessary to perform certain actions on the 
hypervisor which are essential to the correct operation of the environment, provisions must be made 
to ensure that if the server loses power, it can recover upon power-up without further intervention 
from the system administrator. The configuration nodes must store the hypervisor’s root password in 
plaintext in order to be able to execute the necessary commands, so each of these machines is 
scripted to power on upon cold boot of the host, execute the necessary configuration scripts, and then 
shut itself off to provide a very narrow window operation to deter exploitation. 

 



 

 
The administration node will act as the backbone for the operation of the environment. It acts as the 
bridge between the user’s requests and the hypervisor’s actions. The administration node runs an 
Apache web server, a MySQL database server and a PHP interpreter engine which hosts an information 
and control portal for the environment. The portal is the first step in a user’s access of the 
environment. After user authentication via PHP sessions, the user can perform a number of actions, 
such as power on or off virtual machines, launch the NX remote access plugin, reload a virtual disk from 
backup (if a machine change should happen to have caused it to fail to boot), examine system load and 
hardware usage, view and message users currently using lab resources, view lab-level data such as 
spectrum, and more. The portal also hosts lab documentation and tutorials for the provided tools in 
the form of a comprehensive wiki.  In order to accomplish hypervisor-level actions such as powering on 
or off machines, the portal executes console SSH commands via PHP. 

 
A number of tools will be written for the hypervisor that facilitate remote user interaction as well as 
simplification of administration. The web server requests actions by calling these tools over a SSH 
connection to the server. Tools for user creation, deletion and modification for the portal, machine 
power state control, disk copy and virtual machine initialization, and all other necessary actions will be 
written as shell scripts and stored in the hypervisor’s file-system. 

 
An additional set of scripts will be written for execution on boot by each attack machine.  These scripts 
will set environment variables for the environment such that users can write scripts that may be run on 
any of the four attack sets without modification (e.g. instead of hard-coding machine specifics, these 
may be called from environment variables which are updated by the machine on start-up). 

 
On the transmit machines, scripts will be written to automate the sending and receiving of data. This 
will negate the need for the student to use the machine directly (although they will still be given access 
in order to do so), and add a level of repeatability and conformity to the environment. The machines 
will be scripted to log in and out of several common websites, transfer data to and from a remote 
machine, and perform other everyday user actions. 

 
An overview of the backend software is shown below. 

 



 

 
 

Figure 6: Overview of backend environment 
(duplicated host details omitted) 

 

 
 
 
5.3) Network Architecture 
The network architecture of the environment is designed to allow communication between machines 
where required, while segmenting separate network blocks and also allowing access to all machines 
from the outside world. This is accomplished using a combination of virtual and physical networking 
devices. 

 
Each host is connected to the Iowa State network and thereby the Internet via a physical Ethernet 
interface. The physical Ethernet is connected to a virtual switch on the host, which in turn connects to 
all virtual machines.  In the case of the attack nodes, this Ethernet interface is unrestricted and allows 
traffic on all ports; on the transmitter nodes, the Ethernet interface is restricted to only the ports 
required to contact the machine via SSH and NX via the firewall machine. Each machine also is 
connected to a physical USB WiFi device and by restricting traffic to SSH and NX on the transmitter, all 
HTTP and other traffic is forced across the wireless network for possible interception. 

 



 

The array of routers is connected via a switch to a second physical Ethernet interface on the host. This is 
run through the firewall and eventually connects to the outside world. All administrative machines must 
also be given access to the Iowa State network in order to operate correctly, although they may be given 
access via the firewall machine with a lenient security profile implemented for some added security. 

 
A simplified diagram of the network topology is depicted below. 

 
 

 
 

Figure 7: Full-system network topology 
 
  

 



 

6) System Module Design 
As much of the system is assembled from off-the-shelf components in standard configurations, 
extensive clarification is not necessary. As far as installation of physical components is concerned, 
brackets for secure wall, ceiling, or shelf mounting (depending on client specification) will be provided 
for radio components. The server itself will be installed either in a rack-mountable enclosure or a 
modular ATX case, again depending on final installation location and client request. 

 
The virtual machines will be configured with a standard set of hardware using VMware’s suggested 
settings for the guest OS, with the addition of wireless networking devices as necessary for the 
particular machine being designed. 

 
The backend scripting framework utilizes standard Linux shell commands and VMware’s own command- 
line tools to perform several hypervisor-specific functions. These commands are run on the hypervisor’s 
console via SSH requests from the control node, which are generated using commands embedded in the 
PHP web interface to the environment and executed via PHP’s shell_exec function. This function runs 
under privileges of the webserver user, but because the functions are relayed over SSH, the scripts are in 
fact run with the permissions of the remote host. A privileged user is created on the hypervisor to host 
these commands. 

To handle authentication, the webserver user’s RSA key is stored on the hypervisor. This prevents the 
server for asking for the privileged user password on every script execution. 

 
The script architecture is designed to provide several important functions. First, it allows machines to be 
powered on and off. This is required to accommodate all users of the environment.  With only four 
available radios, only four user machines can be connected to radios and powered on at any given time. 
The assignment of users to machines can be done in two ways; either four virtual machines can be 
created and all users can log on to these machines directly, or one virtual machine per user can be 
created and the radios dynamically assigned as users log on. The former scenario is much less complex, 
but users may be able to modify the environment in ways that affect other users’ results. The latter 
requires more machines and some backend scripting, but allows each user a unique environment, which 
they can edit, at will, without affecting other users. This latter approach is what is attempted in this 
project. 

 
When a user requests to use a machine, the scripts first determine which radios are currently in use.  If 
there are none available, the user is not allowed to log on, or may log on without radios (for retrieving 
files or other offline use); if one or more is available, the user is allowed to choose a radio set to use. It 
patches the radio’s configuration information (USB device address) into the virtual machine’s 
configuration file and then powers on the machine. After the machine has booted, the user is 
redirected to a Java launcher for the NX client, and they can begin to use the environment. 

 
It is conceivable that users will switch radios from logon to logon. Boot scripts on each virtual machine 
will attempt to patch this by setting the interface MAC addresses and establishing environment variables 
to replace key radio-specific data. In this way, users’ scripts can be written to run on any machine. 
Given the option to choose a radio set, users may alternately elect to wait until a specific radio is 
available in order to work on their scripts if problems should arise from changing hardware. 

 



 

 
Because users will be given low-level access to the operating system, it will be possible for the user to 
damage their machine. The web interface will give the user the option to restore the virtual disk image 
from backup, using VMware’s command-line disk cloning tools. 

 
Performance and environment data will be presented to the user, as a means of displaying the current 
status of the radios (e.g. in use versus available) as well as environment conditions such as local radio 
traffic spectrum. 

 
A set of scripts written in Python will run continuously on all transmitter machines. These scripts will 
continually run experiments such as logging in and out of common sites such as Gmail, Facebook and 
Twitter, transferring files, and connecting and disconnecting from the access point. These actions are 
performed in hopes of generating live, capturable data for lab users to experiment with. Some specific 
actions will be able to be requested by the user, such as switching encryption mechanisms, and the user 
will be given access to the machine to generate custom data, but for the most part the transmitter 
nodes will act without user intervention for simplicity. 

A number of scripts will also be made available to the system administrator. These scripts will be 
responsible for initializing the lab for a set of users; user creation, modification and deletion; virtual disk 
and machine configuration; and other tasks. These may be run via direct SSH to the hypervisor, but will 
generally not be made available on the web interface for security. 

 
  

 



 

7) User Interface Design 
The backend of the site may actually run the environment behind the scenes, but the user interface is no 
less important.  The tools and scripts will be wrapped into an attractive and easy to use website. The 
interface will be simple buttons and color-coded displays, and will be heavily documented. User 
authentication will be provided by PHP sessions in order to secure a user’s own machine from use by 
others. 

 
In addition to interfaces to the various script actions, the website will contain documentation for the 
tools and utilities available to the user as a part of the BackTrack design suite. This documentation may 
reference public websites on the tools, or when these are not available will consist of team-written 
documentation.  The user documentation model envisioned for the lab (large numbers of small articles 
with independent topics) ideally fits organization by a wiki. A MediaWiki installation will be used to host 
the user documentation, forming an easily-updatable and convenient-to-access knowledge database. 
Administration documentation will instead be provided via a primarily offline delivery mechanism for 
security. 

 
An important part of the project is the creation and walkthrough of common attack scenarios to carry 
out within the environment. These scenarios will tend to exemplify the use of one or a number of 
related tools, and will serve as tutorial examples that may be built upon by the user to create new and 
interesting experiments. 

  

 



 

8) Testing 
Given the number of different components in this project, individual components as well as the system 
as a whole will need to be extensively tested. To ease this process we have broken the testing down 
into a few distinct parts.  First and foremost, the hardware architecture will need to be evaluated to 
ensure the platform will be able to support four lab users at any given time.  Given our current design, 
this means each physical machine will have to support at least four virtual machines, with the possibility 
of one or two more for administrative purposes.  After the platform has undergone adequate testing 
we will move on to testing the configuration of individual virtual machine as well as the wireless 
hardware. Once the configuration has been validated we can move on to testing individual components 
of the sandbox environment.   For each tool presented in the sandbox we must provide a ‘proof of 
concept’ to show the lab users how to use the tools and hardware provided for them. After all of the 
previous tests have been proven to work we will move on to testing the system as a whole. 

8.1) System Architecture 
Each of the virtual machines will need to meet, at least, the minimum system requirements for the given 
operating system. This first check will help insure an enjoyable user experience.  Next we plan to run 
different benchmarks on the individual virtual machines.  Among these benchmarks are 

 

• Xbench – Xserver benchmark 
• 
• 

CacheBench 
UnixBench 

– Measures bandwidth of the memory subsystem (CPU cache and RAM). 
– High-level Linux benchmarking suite 

 

We can then compare the results to the results published for each operating system. This will allow us 
to compare the performance of the virtual machines with non-virtual versions of the same operating 
system. 

 
8.2) Component Testing 
This set of tests will deal with the basic configuration of the lab environment.  We will test that 
individual components of the lab – wireless access points, virtual machines, wireless cameras, spectrum 
analyzers, and so on – will be able to communicate with each other properly.   To do this well will have 
to manually test the components and analyze the network traffic. We can do this with a tool called 
AirTraf. AirTraf is one of the first 802.11 network analyzers and can be used to ensure proper 
communication using the 802.11 protocol.  In addition to testing that the hardware is communicating 
correctly we will also have to test that our custom administration scripts are working correctly. These 
administrative scripts will be responsible for the booting of virtual machines by the lab user, presenting 
the lab user with what hardware resources are currently available and patching configuration files to 
ensure that any virtual machine will be able to use any of the wireless hardware. Testing must ensure 
that these scripts are working correctly for the lab to be functional. 

 
8.3) Proof of Concept 
Once all the previous tests have been completed we will move on to testing the individual components 
provided in the sandbox environment. Each tool we plan to provide to the user will have to be 
documented as well as proven to work. These ‘proof of concept’ tests will also function as a tutorial on 
how to use the tools to execute different attacks inside the lab environment.  Once we have completed 

 



 

these tests on a single machine we will have to verify that they do not interfere with other users who 
are trying to conduct their own experiments. 

 
8.4) Overall System 
We plan to test the overall system by having the Spring 2013 class of Computer Engineering 537 
perform a few of the proof of concept demonstrations as well as play around with the system and see 
what they can do to break it.   This test will be crucial to evaluating the system we have designed. We 
hope to have the system operational sufficiently long before the end of the semester in order to allow 
adequate testing time. 

  

 



 

9) Functional Requirements 
 
9.1) OpenBTS & USRP Requirements 
The system shall implement a functioning OpenBTS sub-system using USRP’s as communication 
hardware. 

Fit Criteria: USRP’s run on the GSM network and are the hardware available for with OpenBTS to 
communicate with. 
Rationale: OpenBTS will be provide the communication software to give function to USRP’s. 

 

The system shall act as a wireless base station for the purpose of injecting, receiving, and sending 
wireless data. 
Fit Criteria: The purpose of the lab is to non-destructively interact with wireless traffic. 

Rationale: The basic ways to interact with data are create/rename/update/delete – as a wireless base   
station students will be able to entertain all possibilities. 

 
Between OpenBTS and USRP’s, Labview shall be used to transfer data and interact as an interstitiary 
application. 

Fit Criteria: OpenBTS doesn’t directly interface with the USRP’s. 

Rationale: In order to create a wireless base station the hardware must have a line of communication 
with the software. 

 

The existing web control interface shall be updated to reflect control of the new USRP & OpenBTS 
functionality. 
Fit Criteria: Users control the system through a web interface. 

Rationale: In order to utilize our updates and changes, users will need to have an updated and 
functional interface to do so. 
 

Ubuntu virtual machines will be created to interface with the USRP’s and run the OpenBTS system. 

Fit Criteria: Users are interacting with the system entirely remotely. 

Rationale: OpenBTS is software designed to run on *nix systems; LabView is also compatible with *nix 
systems. 
 
9.2) Existing System Requirements 
The existing system consisting of backtrack linux, webserver, and attack clients shall be resurrected 
and made functional again. 
Fit Criteria: The existing system maintains much functionality that is useful to build upon to further the 
project goal of student lab experiments. 

Rationale: The existing system is already built and simply needs to be reconfigured for new hardware. 

 

 



 

The existing system shall be made current to any security patches. 

Fit Criteria: The existing system was made a couple of years ago and deserves security attention. 

Rationale: Many security patches occur every year and there are bound to be some we need to 
implement. 
 

The existing system shall be remotely accessible through VMWare vSphere Clients and VMWare 
workstations. 
Fit Criteria: This is a remote access, wireless lab for students. 

Rationale: Students will be unable to gain physical access to the server / peripherals and must be able 
to still interact with the lab. 

 

  

 



 

10) Non-Functional Requirements 
 
10.1) Documentation 
Updated documentation shall be created and merged with existing documentation where possible. 
Fit Criteria: The system is to be used for students for a number of years. 

Rationale: To maintain longevity, the system must be well documented to have a hope of being well 
maintained. 

 
Updated system passwords and account access shall be enacted. 

Fit Criteria: Passwords are regularly compromised. 

Rationale: System administrators and maintainers shouldn’t have to worry about the insecurity of 
passwords or have to hunt for them in many places. 
 
10.2) Legal 
Design actions shall be taken to prevent end-user students from breaking the law by any means of 
illicit activity. 
Fit Criteria: System must be legal to operate. 

Rationale: If a student breaks the law unknowingly using a lab from Iowa State, the University is but in 
a compromising legal position. 

 
System shall conform to any and all operational and environmental requirements and regulations. 

Fit Criteria: System must be legal to operate. 

Rationale: System must conform to all regulations imposed by governing bodies. 

 
10.3) User Experience 
Overall system user experience shall not be learning prohibitive. 

Fit Criteria: The user interface must be intuitive to use. 

Rationale: If end-users are unable to use the software the system functionality is nullified. 

 
  

 



 

11) Risk and Mitigation 
 

11.1) Risk: No access to web server 
Mitigation: We can request members of the previous group to send us the web server materials, and 
create a virtual machine image from it, so that this problem is never encountered again by us, or 
subsequent groups. 

 
11.2) Risk: USRP/OpenBTS has unknown level of compatibility with a virtualized environment 
Mitigation: Depending on levels of compatibility, we could limit the number of virtual machines that 
have access to the devices, or in the extreme case, run this portion of the project on a standalone 
server. 

 
11.3) Risk: Serious ethical and legal boundaries involved in the project 
Mitigation: Carefully explore and define these boundaries. Make them absolutely clear, and possibly 
limit what software can do to avoid crossing these boundaries. 

  

 



 

12) Maintainability 
 

The goal of the Wireless Computer Security Lab is to provide the students of the Computer 
Engineering 537 class a practical environment for experimenting with wireless security. Since this class 
is taken by distance education students, the lab must be setup with special considerations that a 
normal computer lab may not consider. One consideration is how the students will access the lab as 
they will not have physical access to the lab equipment. Another consideration is the physical 
environment the lab will reside in. Things like temperature, space and wireless signal interference are 
critical to the operation of the lab. Finally, due to the type of experiments, the students will require a 
fairly high level of control over the equipment. The lab must be built with this in mind. 

 

 Since some experiments will require the student to have direct control over different 
equipment, there is a concern over the possibility of the student breaking the lab environment that has 
been set up for them. This concern makes the lab a prime candidate for virtualization. For example if a 
student were to delete an important configuration file while editing it the system may no longer work 
the way it was intended to or work at all. However since the machine is a virtual image, the system 
administrator would be able to back up the machine to a previously working state very easily. Besides 
making the lab easy to administrate, virtualization also makes the lab more cost effective. Instead of 
having one physical computer running one lab session for one student, the lab will be able to run 
multiple sessions on one physical machine for multiple students. Now that the amount of physical 
equipment needed is significantly less, the amount of space needed to run the lab is also significantly 
less. 

  
By choosing to run the lab in a virtual environment as well as having the lab only remotely 

accessible to students, the amount of space required to set up and run the lab is small enough not to 
warrant entire room. It has been decided that, since the amount of space required is relatively small, 
the lab will be set up and run in the Nuclear Engineering Building along will other machines of the same 
type. This raises the concern that with so many computers so close together that the temperature may 
excide the level of safe operation. This has yet to be seen and probably will not be testable until the 
weather becomes significantly warmer. However, it still remains a concern. Another concern that arises 
from having so many computers so close together is with so many wireless signals on the airwaves 
there may be a considerable amount of interference. To counter this when the machine is set up in 
Nuclear Engineering an audit of wireless traffic must be done. Once this information has been analyzed 
the correct configuration should allow the lab to co-exist with the rest of the computers. 
  

 



 

13) Conclusion 
Although exact specifications for how the tests should be judged have not been agreed upon yet we 
have laid out an extensive plan for what needs to be tested and how we plan to execute those tests. We 
are confident that once the system is able to pass each phase of testing that the end product will be fully 
functional. We are also confident that the choices we have made in the design of this system are the 
best choices in terms of functionality per dollar. Every decision was made with the idea of creating the 
most versatile lab environment within a reasonable budget. Using USB devices allows us to keep costs 
down and consolidate more VMs to each host. Using open source software allows us flexibility in 
choosing an operating system and costs us nothing. Opting for a virtual environment allows for greater 
system uptime along with keeping overall hardware costs down. Although we are confident with our 
decisions we are leaving previously discussed options open.  To the best of our research, we could not 
find any lab environment like the one we were asked to design. With this in mind it is likely there could 
be unforeseen obstacles as we move toward implementation. 
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